Landmark indexing for scalable evaluation of label-constrained reachability queries

Lucien Valstar, George Fletcher, and Yuichi Yoshida

Dutch Belgian Database Day 2016
Mons, Belgium
October 28, 2016
Introduction & problem statement
Introduction

- Web and many other contemporary applications are generating huge amounts of graph data. Many of these are edge-labelled.
- Examples:
 - RDF, semantic web
 - knowledge graphs
 - social networks,
 - road networks
 - biological networks
Example: social network

- LCR-query: can v_1 reach v_3 using only edges of the label \{friendOf\}?
 - No, hence query $(v_1,v_3,\{friendOf\})$ is false.

- Can v_1 reach v_3 using only edges of the labels \{friendOf, likes\}?
 - Yes, hence the query $(v_1,v_3,\{friendOf, likes\})$ is true.

Figure 1: An example of a directed graph with $|V| = 5$ vertices, $|E| = 7$ edges, and edge labels $\mathcal{L} = \{\text{likes, follows, friendOf}\}$.
Solutions
Breadth-first search

- Given a query \((v,w,L)\) we wish to find out whether the query is a true- or a false-query.
- BFS explores the graph looking for \(w\) using only edges with a label \(l \in L\).
- It has the ‘maximum’ query answering time, but the ‘minimum’ index construction time and index size.
Landmarked-index (LI): our basic idea

- Building a full index, i.e. for all vertices, takes too much time and memory, but can answer all queries immediately.
- Hence we build an index for a subset of the vertices \(k \leq n \) (called landmarks) of vertices: \(v_1, \ldots, v_k \), where \(n \) is the number of nodes.
- Build an index for each \(v_1, \ldots, v_k \).
- Use BFS as baseline and use \(v_1, \ldots, v_k \) to speed up the query answering.
Landmarked-index (LI+): extensions

For large graphs we get that the ratio k/n gets lower. Because we use BFS as a baseline, we may experience two issues.

1) Reaching the landmarks may take a long time, hence we store some (say b) label sets connecting non-landmarks with landmarks.

2) False queries are still slow with LI-approach. For each landmark v and a label set L^*, we store a subset of the vertices $V^* \subseteq V$ s.t. for all v^* in V^* we have that (v,v^*,L^*) is a true-query. This is used for pruning.
Experimental results
A few real datasets

| Dataset | $|V|$ | $|E|$ | $|L|$ | k | b |
|----------------------|------|-------|------|------|------|
| soc-sign-epinions | 131k | 840k | 8 | 1318 | 15 |
| webGoogle | 875k | 5.1M | 8 | 1751 | 15 |
| zhishihudong | 2.4M | 18.8M | 8 | 4905 | 15 |
| wikiLinks (fr) | 3M | 102.3M| 8 | 1738 | 20 |

- Used server with 258GB of memory and a 32-core 2.9Ghz processor
- Set a 6-hour time limit and a 128GB memory limit
- Method under study: LI+
- Single-threaded
- 3,000 true-queries
- 3,000 false-queries
Results on these graphs
- Index size (MB) and construction time
- Speed-up over BFS

| Dataset | IS (MB) | IT (s) | True, $|L|/4$ | False, $|L|/4$ | True, $|L|-2$ | False, $|L|-2$ |
|------------------|---------|--------|----------|---------------|--------------|--------------|
| soc-sign-opinions| 1,159 | 114 | 1,733 | 1,894 | 4,213 | 2,958 |
| webGoogle | 27,117 | 4,691 | 4,181 | 5,908 | 4,385 | 20 |
| zhishihudong | 16,199 | 6,419 | 803 | 911 | 954 | 20 |
| wikiLinks | 98,125 | 24,873 | 10,200 | 9321 | 13,082 | 8036 |
Additional results

- Similar results have been obtained on 23 real datasets
- And on dozens of synthetic datasets where we varied:
 - graph size (5k up until 3.125M vertices)
 - label set distribution (exponential, normal, uniform)
 - label set size (from 8 to 16)
 - growth model (Erdos-Renyi, Preferential Attachment)
- Other query related types (e.g. distance queries) were studied
Conclusion
Conclusion

- Landmarked-Index is scalable w.r.t. the graph size.
- Landmarked-Index leads to multiple orders of magnitude speed-ups, although there is some asymmetry still between true- and false-queries.
- Future work:
 - Landmarked-Index could be a groundwork for other types of queries (distance queries, finding a witness, defining a budget per label, RPQ).
 - Maintainability of the index.
Questions?
Related work

- Zou et al. “Efficient processing of label-constraint reachability queries in large graphs.” is about LCR.
- Bonchi et al. “Distance oracles in edge-labeled graphs.” is about LCR+distance.

- For more on the LI-algorithm: https://www.youtube.com/watch?v=QKLtpoLdXfk