Scalable Model
Revision Control

X. Blanc
Université de Bordeaux / LaBRI
Xavier.Blanc@Ilabri.fr

Outline

* SE@LaBRI

* |Issues

* SCM key concepts
* Models

* How to deal with model fragmentation ?
* Model Unit, Method Unit
* Reuse Strategy

* Validation
* Conclusion

SOFTWARE ENGINEERING AT LABRI

LaBRI @ Bordeaux

* University Bordeaux 1
Science & Technology
10000 students
37 labs

* LaBRI

130 researchers

130 PhD Students

Moulis
Margaux
Haut-Medoc

Cotes de Blaye
Cotes de Bourg

BORDEAUX

Pessac-Leognan

| Belgique

{

9 -3

. [3 ~ L»/{ Allemagne
{ o Amiens / \& k ag
S .""—r«.w ’.)\,\“uen p J \ '
Coon 's\ et Reims \
PARIS l\;\ P e Metz

Chames. _

-\

- y - o
4 Nagl Nimes .

i) i Toulou: A

@ Biarritz P.au w/. Monlpelhe:” (\///\

5

MR

A
\ »///\ 3

- Mg:em \ o
o \ \ Duon//
" Tours - Bourges Be.san
! O 7/
Poitiers | N N\ (i
.)) “ Macon
Sckan \;.,Lanod\elle / / \ b
Atlantique J | _Umoges) Clermont.) { A \
® Royan L Femand © ghyon | Afmecy
I\ B B a
\ o /
AN AR S
Lo ~ 3 ~Grenoble |
N Bordeaux——. 1 Y el
| N, ~ N !
"‘ N~ — { /7,/

\ Avlqnon}
. g / N|<_e

<\ Marseille o

‘ \\(/ J .
i - o L)
oY (Carcassonne e ouloud
v | mer Méditerranée
v. '] Espagne om an

Grcwes

pmieres Cotes

de Bordeaux
Cadillac
Cerons

Barsac

Loupiac

Carte des vins
de Bordeaux

Software Engineering

New research theme
September 2010 (5 months ago)

Domain
Software Engineering / Design / Model Driven

Static Analysis / Consistency
Complex System (Internet)

2 researchers
Jean-Remy Falleri & Xavier Blanc
1 (+1) PhD Student
David Bruant => Web Client
Open Position =>

ISSUES

How to version a model ?

What to version ?
A model, a model fragment ?

How to deal with collaborative work ?
Copy-modify-merge
Lock

What to copy / modify merge ? What to lock ?
A model (+ its links) ?

What about diagrams / views ?

What about model size ?

SCM KEY CONCEPTS

SCM

* Management support discipline and
development support discipline

* Use cases
Management Development
1. Update a project 1. Build a project

2. Look-up a particular version 2. Shareit
3. Track the changes 3. Commit & Update [Lock]

Product Space [Conradi98]

ProductSpace

+derived SoftwareObject

CompositeObject

LongAttribute

+ content: string

* How to represent a
product space ?

Version Space [Conradi98]

Evolvingltem

VersionSpace

Versionedltem

Unversioneditem

* Aversionv
represents a state of
an evolving item i.

* Versions of an item
share a common
properties called
Invariants.

* How to represent a
version space ?

Tree, Graph
States / Changes

Interplay of product space and
version space |Conradi98]

* A versioned object is * Product First
simply represented
by an OR node whose
outgoing edges point
to its versions.

* AND edges are used
to represent both
composition and
dependency
relationships.

//\ /7 \] 1
\ /7 1 |
/
/ \ / \ I |
/ \
/ \ / 1 1
\

Granularity of versionning
|Conradi98]

* At the external interface, software objects are the items
subject to version control

* Component versioning: only atomic objects are put under version
space, modeled, for example, by a version graph.

7\ 7\ 1
/I N\ /7 1
1

Ib
|
|
/ \ / \ |
/ \ / \
/ \ / \

Version Control Mechanism

* Pessimistic version control : parallel editing is prevented by
locking

ltems are locked
Consistency has to be preserved (links)
* Optimistic version control : parallel editing is supported thanks
to a copy-modify-merge approach
ltems are copied and modified
ltems are merged in case of parallel modifications
Conflicts are identified and resolved

Software Merging [Mens01]

Two-Way or Three-Way merging
* A common base version (or not)

Merging
 Textual / Syntactic / Semantic

State based or operation based

Conflict
* Detection

* Resolution

SCM on Models

* What are the relationships between models and software
objects?
* What are the versioned items?
* What to version ?
* How to deal with collaborative work ?
* What to commit / update ?
* How to merge ?
* What to lock ?

MODELS

Models

* Principles [OMGO1][Mellor03][Selic03][Schmidt06]
Software artifact => Model
Software => described by on global model (N models)

* A model is composed of elements (Typed Graph) [SpanoudakisO1]

//Model in Alloy

sig Model {
me: set ME,
metaclass: me -> one MC,
valueP: me ->P ->V,
valueR: me -> R -> me,

Fragments and views (1/2)

Client 0.1 Server
+name : String —
+5 HrunServicel()

Fragments and Views (2/2)

* A fragment is included in a model
Some of the model elements
Some of the values
Some of the references
* Aview is a graphical representation of a fragment
No additional element

=> What are the fragments and views that
should be versioned ?

HOW TO DEAL WITH MODEL
FRAGMENTATION ?

Reuse Unit and Method Unit

* Key Principles
The model Elements should be partitioned, each partition is a
versioned item

The view elements just reference model elements. A view is
composed of view elements. A view is a versioned item.

* Two concepts

Reuse Unit (RU) : a versioned item that contains a partition of
model element

Method Unit (MU) : a versioned item that contains one view

=> Modifying a model element has an impact only on its
containing RU and on its referencing MU

Example

2: Server

3 - runService

= 11:return

Sub-problems

* How to fragment models and views in RU and MU ?
* How to assign model elements into RU ?
* How to assign view elements into MU ?
* How to organize RU and MU ?

=> Reuse Strategy

Reuse Strategy

* The assignments of model elements and view elements to RU
and MU are statically defined by a reuse strategy.

* A strategy defines two assignment functions
ME -> RU
VE -> MU

* In order to organize RU and MU, we define the concept of

Product Unit (PU) that groups RU and MU in a hierarchy
(directory like).

Examples of Strategy

* AlliInOne strategy
All model elements are assigned to the same RU
All view elements are assigned to the same RU
The RU is organized in one PU
XMl strategy with IBM Software Modeler
* AllInAll strategy
All model elements are assigned to their own RU

A MU is created for each view. The MU contains all the view elements of the
view.

The RU and MU are organized in one PU

* SequenceAndClass strategy (UML)
For each class, a dedicated RU is created
All operations and properties of a class are assigned to the RU of their class
For each sequence, a dedicated RU is created
All lifelines of a sequence are assigned to the RU of the sequence

For each diagram, a dedicated MU is created. The MU contains the
corresponding view elements that reference model elements in RU.

Use Case

* Update

The developer choose the elements he wants to update

He may choose a root elements and all the contained elements will
be selected

The corresponding RU and MU (the ones that contain the chosen
elements) are identified

The corresponding RU and MU are updated to the last version
* Commit

The developer choose the elements he wants to commit

The corresponding RU and MU are identified

The corresponding RU and MU are committed
* Lock

=> Side effect = considered elements >> chosen ones

Scalability

* A strategy is scalable if its maximum number of model
elements in a RU (MAS) is a constant.

Motivations:

Size of the overhead (considered elements should be equal to the
chosen ones)

Complexity of the diff / merge (the more elements, the more
complex)

* A strategy is scalable if, considering a classical sequence of
changes, the maximum number of exchanged messages
(MEM) between the workspace and the repository is a
constant.

Motivations:

Transaction of commit (if the model elements to commit belong to
more than one RU).

Efficiency

* A strategy should not need too many RU
(P1) let s1, s2 be two strategies, s1 is more pragmatically scalable
than s2 if and only if Card(RU),, < Card(RU).,
* A strategy should not imply the modification of too many RU
in response to classical changes done by the developers.

(P2) let s1, s2 be two strategies, s1 is more pragmatically scalable

than s2 if and only if Card(RU(AfActions))., < Card(RU(AfActions))
s2

VALIDATION

Prototype

* A CASE tool proxy that implements a reuse strategy and that
interacts with SVN

* A sample scenario
1. Init SVN
2. Select a strategy

3. Build a model
A class diagram and a sequence diagram

Commit the model
Move an operation
Commit again

Numbers

Strategy
Expl
Exp2
Exp3
Exp4
Exp5

Average (ms)
Ratio (/smaller
one)

Nb of units

SequenceAndClass AlllnAll
14863
14676
14817
15298
14793

14889,4

2,20668702

23063
22889
23083
23003
23197

23047

3,41568604

AllinOne

6940
6979
6988
6449
6381

6747,4

Many more to do

Real models

Real strategy

Real scenario

Real Merge
* The state of the art is very rich on that topic

Empirical Study

CONCLUSION

Related Work

* A lot for model merge

[Alanen03][Ohst03][Sriplakich06] (Treude07][Gerth10]
[Kobnemann10]

* Not so much (found) for model fragmentation
Model Slicing => not the same problem
[Nguyen05][Nguyen06] => not for huge models

Synthesis

What are the relationships between models and software objects?
RU and MU are the software objects
They fragment model elements and view elements
What are the versioned items ?
RU and MU are the versioned items
How to create them ?
Thanks to a predefined reuse strategy
How to deal with collaborative work ?
What to commit / update ?
The identified RU and MU
How to merge ?
Merge algorithm on RU and MU ? => Further work
What to lock ?
The identified RU and MU

Further Work

Formal definition for strategy

Validation of our comparison criteria (scalability and
efficiency)

Experiment with developers of models
Bridge UML strategy with SVN & GIT

