Benchmarking Reverse Engineering Tools and Using Tool Output for Further Analysis

David Cutting and Joost Noppen

University of East Anglia

david.cutting@uea.ac.uk, j.noppen@uea.ac.uk
Presentation Outline

• Introduction to Traceability Forensics Project

• Benchmarking of Reverse Engineering

• Working Further with Reverse Engineering Output for Analysis and Comparison

• Next Steps
Traceability Forensics Project

• We aim to recover traceability links

• Using partial or missing documentation

• Along with other information sources:
 – Source Code
 – Semantic Analysis
Reverse Engineering

• One of the main sources of information about software is the software itself

• Reverse engineering offers a powerful tool for program comprehension

• There are a lot of reverse engineering tools but...
Reverse Engineering Tools

• Although there are many tools they
 – Vary in output (which is right, which is wrong?)
 – Have no standard means of comparison
• This is org.jhotdraw.io from Rational Rhapsody:
Reverse Engineering Tools

- org.jhotdraw.io from Astah Professional:

- org.jhotdraw.io from ArgoUML:
The Benchmark

• To compare and rank different tools we created a benchmark (the Reverse Engineering to Design Benchmark: RED-BM)

• 16 target artifacts
 – Varying from 100 to 40,000 lines of code
 – From 7 to 450 classes
 – Range of architecture styles and complexity
 – “Gold standard” for each in terms of contained classes and sampled relationships
The Benchmark

• Existing designs where available
• Reverse engineering output from other tools for comparison
• Initial measures for class detection, packages, and relationships:

\[
Cl(s,r) = \frac{C(r)}{C(s)} \quad Sub(s,r) = \frac{S(r)}{S(s)} \quad Rel(s,r) = \frac{R(r)}{R(s)}
\]

For artifact \(x \): \(C(x) \) is the ratio of correct classes, \(S(x) \) ratio of correct packages and \(Rel(x) \) ratio of correct relationships in system \(s \) for result \(r \)
The Benchmark

- Individual measures fed into weighted Compound Measure (CM) as function P:

$$P(s,r) = \frac{w_{Cl} Cl(s,r) + w_{Sub} Sub(s,r) + w_{Rel} Rel(s,r)}{w_{Cl} + w_{Sub} + w_{Rel}}$$

- Extensibility – existing and new measures can be combined into new or redefined (refocused) compound measure C:

$$C(s,r) = \frac{\sum_{i=1}^{n} w_i M_i(s,r)}{\sum_{i=1}^{n} w_i}$$
Benchmark Analysis

• We ran a 12 industry reverse engineering tools against the 16 target artifacts
• We then compared output against our “Gold Standard”
 – Rather than doing this manually we used the XMI output from tools (more on this later)
• What we found was quite surprising...
Key Findings

• Wide variance in performance between tools (8.8% to 100%)

• RED-BM is effective at differentiating tool performance

• You don’t always get what you pay for!
Working Further With Reverse Engineering Output

• Benchmarking shows clear differences but we want to be able to use output from reverse engineering for further use
 – Aggregation of output (bringing together multiple imperfect outputs)
 – Combination with other sources of information
XML Metadata Interchange (XMI)

• XMI is an Object Management Group (OMG) Meta-Object Facility (MOF) for exchange of Unified Modeling Language (UML)
 – So XMI = OMG MOF UML (OMG is right!)

• This is a standard but one offering extensibility on many levels

• So effective interchange between tools is pretty much non-existent
Working with XMI

• To create the benchmark we wanted to be able to analyse XMI rather than counting classes by hand
• This entailed the creation of a generic XMI class finder
• In turn this work led to a generic XMI parser to load XMI models into a standard format in memory
Working with XMI
Reconstruction from XMI

• Using UMLet within Eclipse
Next Steps

• Further refine XMI parser/analyser
• Continue on UMLet Eclipse integration
• More sources of information:
 – Source Code Repository mining
 – Documentation analysis
 – Feeding into a Reasoning Component
• Base case software library for example including architectural styles
Thank You

Any questions?

Feel free to email: david.cutting@uea.ac.uk