Symblicit algorithms for optimal strategy synthesis in monotonic Markov decision processes

Aaron Bohy1 Véronique Bruyère1 Jean-François Raskin2

1Université de Mons \quad 2Université Libre de Bruxelles

SYNT 2014
3rd workshop on Synthesis
Overview (1/2)

Motivations:

- Markov decision processes with large state spaces
- Explicit enumeration exhausts the memory
- Symbolic representations like MTBDDs are useful
- No easy use of (MT)BDDs for solving linear systems

Overview (1/2)

Motivations:

• Markov decision processes with large state spaces
• Explicit enumeration exhausts the memory
• Symbolic representations like MTBDDs are useful
• No easy use of (MT)BDDs for solving linear systems

Recent contributions of [WBB$^+10$]1:

• **Symblicit** algorithm
 • Mixes *symbolic* and *explicit* data structures
• Expected mean-payoff in Markov decision processes
• Using (MT)BDDs

Overview (2/2)

Our motivations:

- Antichains sometimes outperform BDDs (e.g. [WDHR06, DR07])
- Use **antichains** instead of (MT)BDDs in symblicit algorithms
Overview (2/2)

Our motivations:

- Antichains sometimes outperform BDDs (e.g. [WDHR06, DR07])
- Use **antichains** instead of (MT)BDDs in symblicit algorithms

Our contributions:

- New structure of **pseudo-antichain** (extension of antichains)
 - Closed under negation
- **Monotonic** Markov decision processes
- **Two quantitative settings:**
 - Stochastic shortest path (focus of this talk)
 - Expected mean-payoff
- **Two applications:**
 - Automated planning
 - LTL synthesis

Full paper available on ArXiv: abs/1402.1076
Table of contents

Definitions

Symblicit approach

Antichains and pseudo-antichains

Monotonic Markov decision processes

Applications

Conclusion and future work
Table of contents

Definitions

Symblicit approach

Antichains and pseudo-antichains

Monotonic MDPs

Applications

Conclusion and future work
Markov decision processes (MDPs)

- $M = (S, \Sigma, \mathcal{P})$ where:
 - S is a finite set of *states*
 - Σ is a finite set of *actions*
 - $\mathcal{P} : S \times \Sigma \rightarrow \text{Dist}(S)$ is a *stochastic transition function*
Markov decision processes (MDPs)

- $M = (S, \Sigma, \mathcal{P})$ where:
 - S is a finite set of **states**
 - Σ is a finite set of **actions**
 - $\mathcal{P} : S \times \Sigma \to \text{Dist}(S)$ is a **stochastic transition function**
 - Cost function $c : S \times \Sigma \to \mathbb{R}_{>0}$
Markov decision processes (MDPs)

- $M = (S, \Sigma, P)$ where:
 - S is a finite set of states
 - Σ is a finite set of actions
 - $P : S \times \Sigma \rightarrow \text{Dist}(S)$ is a stochastic transition function

- Cost function $c : S \times \Sigma \rightarrow \mathbb{R}_{>0}$

- (Memoryless) strategy $\lambda : S \rightarrow \Sigma$
Markov chains (MCs)

- MDP \((S, \Sigma, \mathcal{P})\) with \(\mathcal{P} : S \times \Sigma \rightarrow \text{Dist}(S)\) + strategy \(\lambda : S \rightarrow \Sigma\) \(\Rightarrow\) induced MC \((S, \mathcal{P}_\lambda)\) with \(\mathcal{P}_\lambda : S \rightarrow \text{Dist}(S)\)
Markov chains (MCs)

- MDP \((S, \Sigma, P)\) with \(P : S \times \Sigma \rightarrow Dist(S)\) + strategy \(\lambda : S \rightarrow \Sigma\) \(\Rightarrow \) induced MC \((S, P_\lambda)\) with \(P_\lambda : S \rightarrow Dist(S)\)

- Cost function \(c : S \times \Sigma \rightarrow \mathbb{R}_{>0}\) + strategy \(\lambda : S \rightarrow \Sigma\) \(\Rightarrow \) induced cost function \(c_\lambda : S \rightarrow \mathbb{R}_{>0}\)
Expected truncated sum

- Let $M_\lambda = (S, P_\lambda)$ with cost function c_λ
- Let $G \subseteq S$ be a set of goal states
Expected truncated sum

- Let $M_\lambda = (S, \mathcal{P}_\lambda)$ with cost function c_λ
- Let $G \subseteq S$ be a set of goal states

$\text{TS}_G(\rho = s_0 s_1 s_2 \ldots) = \sum_{i=0}^{n-1} c_\lambda(s_i)$, with n first index s.t. $s_n \in G$
Expected truncated sum

• Let $M_\lambda = (S, P_\lambda)$ with cost function c_λ
• Let $G \subseteq S$ be a set of goal states

$TS_G(\rho = s_0s_1s_2 \ldots) = \sum_{i=0}^{n-1} c_\lambda(s_i)$, with n first index s.t. $s_n \in G$

$E^{TS_G}_\lambda(s) = \sum_\rho P_\lambda(\rho)TS_G(\rho)$, with $\rho = s_0s_1 \ldots s_n$ s.t. $s_0 = s, s_n \in G$ and $s_0, \ldots, s_{n-1} \not\in G$
Stochastic shortest path (SSP)

- Let $M = (S, \Sigma, \mathcal{P})$ with cost function c
- Let $G \subseteq S$ be a set of goal states
- λ^* is *optimal* if $\mathbb{E}_{\lambda^*}^{TS_G}(s) = \inf_{\lambda \in \Lambda} \mathbb{E}_{\lambda}^{TS_G}(s)$
Stochastic shortest path (SSP)

- Let $M = (S, \Sigma, \mathcal{P})$ with cost function c
- Let $G \subseteq S$ be a set of goal states

λ^* is *optimal* if $\mathbb{E}_{\lambda^*}^{TS_G}(s) = \inf_{\lambda \in \Lambda} \mathbb{E}_{\lambda}^{TS_G}(s)$

- SSP problem: compute an optimal strategy λ^*

- Complexity and strategies [BT96]:
 - Polynomial time via linear programming
 - Memoryless optimal strategies exist
Table of contents

Definitions

Symblicit approach

Antichains and pseudo-antichains

Monotonic Markov decision processes

Applications

Conclusion and future work
Ingredients

- Strategy iteration algorithm [How60, BT96]
 - Generates a sequence of **monotonically improving strategies**
 - 2 phases:
 - strategy evaluation by solving a linear system
 - strategy improvement at each state
 - Stops as soon as no more improvement can be made
 - Returns the optimal strategy along with its value function
Ingredients

• **Strategy iteration algorithm** [How60, BT96]
 • Generates a sequence of *monotonically improving strategies*
 • 2 phases:
 • strategy evaluation by solving a linear system
 • strategy improvement at each state
 • Stops as soon as no more improvement can be made
 • Returns the optimal strategy along with its value function

• **Bisimulation lumping** [LS91, Buc94, KS60]
 • Applies to MCs
 • Gathers states which behave equivalently
 • Produces a *bisimulation quotient* (hopefully) smaller
 • Interested in the *largest* bisimulation \sim_L
Symblicit algorithm

- Mix of symbolic and explicit data structures

Algorithm 1 Symblicit(MDP M^S, Cost function c^S, Goal states G^S)

1: $n := 0$, $\lambda_n^S := \text{InitialStrategy}(M^S, G^S)$
2: repeat
3: $(M_{\lambda_n}^S, c_{\lambda_n}^S) := \text{InducedMCAndCost}(M^S, c^S, \lambda_n^S)$
4: $(M_{\lambda_n, \sim_L}^S, c_{\lambda_n, \sim_L}^S) := \text{Lump}(M_{\lambda_n}^S, c_{\lambda_n}^S)$
5: $(M_{\lambda_n, \sim_L}^S, c_{\lambda_n, \sim_L}^S) := \text{Explicit}(M_{\lambda_n, \sim_L}^S, c_{\lambda_n, \sim_L}^S)$
6: $v_n := \text{SolveLinearSystem}(M_{\lambda_n, \sim_L}^S, c_{\lambda_n, \sim_L}^S)$
7: $v_n^S := \text{Symbolic}(v_n)$
8: $\lambda_{n+1}^S := \text{ImproveStrategy}(M^S, \lambda_n^S, v_n^S)$
9: $n := n + 1$
10: until $\lambda_n^S = \lambda_{n-1}^S$
11: return $(\lambda_{n-1}^S, v_{n-1}^S)$

Key: S in superscript denotes symbolic representations
Table of contents

Definitions

Symblicit approach

Antichains and pseudo-antichains

Monotonic Markov decision processes

Applications

Conclusion and future work
Antichains

- Let \((S, \preceq)\) be a semilattice with greatest lower bound
- A set \(\alpha \subseteq S\) is an antichain if \(\forall s, s' \in \alpha, s \not\preceq s'\) and \(s' \not\preceq s\)
- The closure of \(\alpha\) is \(\downarrow \alpha = \{ s \in S \mid \exists a \in \alpha, s \preceq a \}\)
- Example: \(\alpha = \{a_1, a_2\}\)
Antichains

- Let \((S, \preceq)\) be a semilattice with greatest lower bound
- A set \(\alpha \subseteq S\) is an antichain if \(\forall s, s' \in \alpha, s \not\preceq s'\) and \(s' \not\preceq s\)
- The closure of \(\alpha\) is \(\downarrow\alpha = \{s \in S \mid \exists a \in \alpha, s \preceq a\}\)
- Example: \(\alpha = \{a_1, a_2\}\)

- **Canonical representations** of closed sets by their maximal elements (*unique*)
- **Efficient computations** of closures of antichains w.r.t. union and intersection
- **But** antichains are not closed under negation
Pseudo-elements

- Let \((S, \preceq)\) be a semilattice with greatest lower bound.
- A **pseudo-element** is a pair \((x, \alpha)\) where \(x \in S\) and \(\alpha \subseteq S\) is an antichain such that \(x \not\in \downarrow \alpha\).
- The **pseudo-closure** of \((x, \alpha)\) is \(\uparrow(x, \alpha) = \{ s \in S \mid s \preceq x \text{ and } s \not\in \downarrow \alpha \} = \downarrow \{x\} \setminus \downarrow \alpha\).
- Example: \((x, \alpha)\) with \(\alpha = \{a_1, a_2\}\).

![Diagram showing pseudo-elements and related concepts]

\[x\]
\[a_1\]
\[a_2\]
Pseudo-elements

- Let \((S, \preceq)\) be a semilattice with greatest lower bound
- A **pseudo-element** is a pair \((x, \alpha)\) where \(x \in S\) and \(\alpha \subseteq S\) is an antichain such that \(x \not\in \downarrow \alpha\)
- The **pseudo-closure** of \((x, \alpha)\) is \(\uparrow(x, \alpha) = \{s \in S \mid s \preceq x \text{ and } s \not\in \downarrow \alpha\}\)
 \[= \downarrow \{x\} \setminus \downarrow \alpha\]
- Example: \((x, \alpha)\) with \(\alpha = \{a_1, a_2\}\)

- \((x, \alpha)\) is in **canonical form** if \(\forall a \in \alpha, a \preceq x\) (unique)
Pseudo-antichains

- A **pseudo-antichain** A is a set $\{(x_i, \alpha_i) \mid i \in I\}$ of pseudo-elements.
- The **pseudo-closure** of A is $\uparrow A = \bigcup_{i \in I} \uparrow(x_i, \alpha_i)$.
A pseudo-antichain A is a set $\{ (x_i, \alpha_i) \mid i \in I \}$ of pseudo-elements.

The pseudo-closure of A is $\uparrow A = \bigcup_{i \in I} \downarrow (x_i, \alpha_i)$.

A is a PA-representation of $\uparrow A$ (not unique).
Pseudo-antichains

- A **pseudo-antichain** A is a set $\{(x_i, \alpha_i) \mid i \in I\}$ of pseudo-elements.
- The **pseudo-closure** of A is $\uparrow A = \bigcup_{i \in I} \uparrow (x_i, \alpha_i)$.
- A is a **PA-representation** of $\uparrow A$ (not unique).
- Any set can be PA-represented.
- **Efficient computations** of pseudo-closures of pseudo-antichains w.r.t. the union, intersection and negation.
Table of contents

Definitions

Symblicit approach

Antichains and pseudo-antichains

Monotonic Markov decision processes

Applications

Conclusion and future work
Monotonic properties

Intuition on a transition system (TS) \((S, \Sigma, \Delta)\) where:

- \(S\): set of states
- \(\Sigma\): set of actions
- \(\Delta\): transition function
Monotonic properties

Intuition on a transition system (TS) \((S, \Sigma, \Delta)\) where:

- \(S\): set of states
- \(\Sigma\): set of actions
- \(\Delta\): transition function

A **monotonic** TS is a TS \((S, \Sigma, \Delta)\) s.t.:
- \(S\) is equipped with a partial order \(\preceq\) s.t. \((S, \preceq)\) is a semilattice
Monotonic properties

Intuition on a transition system (TS) \((S, \Sigma, \Delta)\) where:

- \(S\): set of states
- \(\Sigma\): set of actions
- \(\Delta\): transition function

A **monotonic** TS is a TS \((S, \Sigma, \Delta)\) s.t.:

- \(S\) is equipped with a partial order \(\preceq\) s.t. \((S, \preceq)\) is a semilattice
- \(\preceq\) is **compatible** with \(\Delta\), i.e. \(\forall s, s' \in S\)
 \[
 s \preceq s'
 \]
Monotonic properties

Intuition on a transition system (TS) \((S, \Sigma, \Delta)\) where:

- \(S\): set of states
- \(\Sigma\): set of actions
- \(\Delta\): transition function

A **monotonic** TS is a TS \((S, \Sigma, \Delta)\) s.t.:

- \(S\) is equipped with a partial order \(\preceq\) s.t. \((S, \preceq)\) is a semilattice
- \(\preceq\) is **compatible** with \(\Delta\), i.e. \(\forall s, s' \in S\)

\[
\begin{align*}
 s & \preceq s' \\
 \forall \sigma \in \Sigma
\end{align*}
\]

\[
\Delta(s', \sigma) \rightarrow t'
\]
Monotonic properties

Intuition on a transition system (TS) \((S, \Sigma, \Delta)\) where:

- \(S\): set of states
- \(\Sigma\): set of actions
- \(\Delta\): transition function

A monotonic TS is a TS \((S, \Sigma, \Delta)\) s.t.:

- \(S\) is equipped with a partial order \(\preceq\) s.t. \((S, \preceq)\) is a semilattice
- \(\preceq\) is compatible with \(\Delta\), i.e. \(\forall s, s' \in S\)

\[
\begin{align*}
 s \preceq s' & \quad \forall \sigma \in \Sigma \\
 \Delta(s', \sigma) & \quad \exists t, t'
\end{align*}
\]
Monotonic properties

Intuition on a transition system (TS) (S, Σ, Δ) where:

- S: set of states
- Σ: set of actions
- Δ: transition function

A **monotonic** TS is a TS (S, Σ, Δ) s.t.:

- S is equipped with a partial order \preceq s.t. (S, \preceq) is a semilattice
- \preceq is compatible with Δ, i.e. $\forall s, s' \in S$

 \[
 s \preceq s' \Rightarrow \exists t, t' \in S
 \]

 $\Delta(s, \sigma) \rightarrow t$

 $\Delta(s', \sigma) \rightarrow t'$
Monotonic properties

Intuition on a transition system (TS) \((S, \Sigma, \Delta)\) where:

- \(S\): set of states
- \(\Sigma\): set of actions
- \(\Delta\): transition function

A **monotonic** TS is a TS \((S, \Sigma, \Delta)\) s.t.:

- \(S\) is equipped with a partial order \(\preceq\) s.t. \((S, \preceq)\) is a semilattice
- \(\preceq\) is *compatible* with \(\Delta\), i.e. \(\forall s, s' \in S\)

\[
\begin{align*}
\Delta(s, \sigma) & \preceq \Delta(s', \sigma) \\
\exists t & \preceq t'
\end{align*}
\]
Monotonic Markov decision processes

Monotonic MDP:

- MDP s.t. its underlying TS is monotonic

Remark:

- All MDPs can be seen monotonic
- Interested in MDPs built on state spaces already equipped with a natural partial order

⇒ Pseudo-antichain based symblicit algorithm for monotonic MDPs
Table of contents

Definitions

Symblicit approach

Antichains and pseudo-antichains

Monotonic Markov decision processes

Applications

Conclusion and future work
A STRIPS is a tuple \((P, I, M, O)\) where

- \(P\) is a finite set of \emph{propositional variables}
- \(I \subseteq P\) is a subset of \emph{initial} variables
- \(M \subseteq P\) is a subset of \emph{goal} variables
STRIPS

A STRIPS is a tuple \((P, I, M, O)\) where

- \(P\) is a finite set of *propositional variables*
- \(I \subseteq P\) is a subset of *initial* variables
- \(M \subseteq P\) is a subset of *goal* variables
- \(O\) is a finite set of *operators* \(o = (\gamma, (\alpha, \delta))\) s.t.
 - \(\gamma \subseteq P\) is the *guard* of \(o\)
 - \((\alpha, \delta)\), with \(\alpha, \delta \subseteq P\), is the *effect* of \(o\)
A STRIPS is a tuple (P, I, M, O) where
- P is a finite set of propositional variables
- $I \subseteq P$ is a subset of initial variables
- $M \subseteq P$ is a subset of goal variables
- O is a finite set of operators $o = (\gamma, (\alpha, \delta))$ s.t.
 - $\gamma \subseteq P$ is the guard of o
 - (α, δ), with $\alpha, \delta \subseteq P$, is the effect of o
STRIPTS

A STRIPS is a tuple \((P, I, M, O)\) where

- \(P\) is a finite set of *propositional variables*
- \(I \subseteq P\) is a subset of *initial* variables
- \(M \subseteq P\) is a subset of *goal* variables
- \(O\) is a finite set of *operators* \(o = (\gamma, (\alpha, \delta))\) s.t.
 - \(\gamma \subseteq P\) is the *guard* of \(o\)
 - \((\alpha, \delta)\), with \(\alpha, \delta \subseteq P\), is the *effect* of \(o\)
STRIPS

A \textit{STRIPS} is a tuple \((P, I, M, O)\) where

- \(P\) is a finite set of \textit{propositional variables}
- \(I \subseteq P\) is a subset of \textit{initial} variables
- \(M \subseteq P\) is a subset of \textit{goal} variables
- \(O\) is a finite set of \textit{operators} \(o = (\gamma, (\alpha, \delta))\) s.t.
 - \(\gamma \subseteq P\) is the \textit{guard} of \(o\)
 - \((\alpha, \delta), \text{ with } \alpha, \delta \subseteq P,\) is the \textit{effect} of \(o\)
A STRIPS is a tuple \((P, I, M, O)\) where

- \(P\) is a finite set of propositional variables
- \(I \subseteq P\) is a subset of initial variables
- \(M \subseteq P\) is a subset of goal variables
- \(O\) is a finite set of operators \(o = (\gamma, (\alpha, \delta))\) s.t.
 - \(\gamma \subseteq P\) is the guard of \(o\)
 - \((\alpha, \delta), \text{ with } \alpha, \delta \subseteq P\), is the effect of \(o\)

\[s \xrightarrow{(\gamma, (\alpha, \delta))} s'\]

\(s \supseteq \gamma\)

\(s' = (s \cup \alpha) \setminus \delta\)

\(\Rightarrow\) TS with monotonic properties
A STRIPS is a tuple \((P, I, M, O)\) where

- \(P\) is a finite set of \textit{propositional variables}
- \(I \subseteq P\) is a subset of \textit{initial} variables
- \(M \subseteq P\) is a subset of \textit{goal} variables
- \(O\) is a finite set of \textit{operators} \(o = (\gamma, (\alpha, \delta))\) s.t.
 - \(\gamma \subseteq P\) is the \textit{guard} of \(o\)
 - \((\alpha, \delta)\), with \(\alpha, \delta \subseteq P\), is the \textit{effect} of \(o\)

\[s \xrightarrow{(\gamma, (\alpha, \delta))} s'\]

\(s \supseteq \gamma\)

\(s' = (s \cup \alpha) \setminus \delta\)

\(\Rightarrow\) TS with \textbf{monotonic} properties

Planning from STRIPS [FN72]

- Find a sequence of operators leading from the initial state \(I\) to a goal state \(s \supseteq M\)
Stochastic STRIPS

• Extension of STRIPS with stochastic aspects [BL00]
 • Probability distribution on the effects of operators

⇝ Monotonic Markov decision processes
Stochastic STRIPS

- Extension of STRIPS with **stochastic aspects** [BL00]
 - Probability distribution on the effects of operators

 \[\rightsquigarrow\] **Monotonic** Markov decision processes

- **Cost function** \(C : O \rightarrow \mathbb{R}_{>0} \)
- Planning from stochastic STRIPS
 - Minimize the expected truncated sum up to a state \(s \supseteq M \) from \(I \)

 \[\rightsquigarrow\] **Stochastic shortest path problem**
Experimental results

| example | $\mathbb{E}^{TS_G}_\lambda$ | $|M_S|$ | #it | $|\sim_L|$ | time | mem | Explicit time | mem |
|------------|-----------------------------|--------|-----|------------|------|-----|---------------|-----|
| Monkey | | | | | | | | |
| (3, 2) | 35.75 | 4096 | 4 | 23 | 0.2 | 16.0| 60.6 | 1626|
| (3, 3) | 35.75 | 65536 | 5 | 43 | 1.6 | 17.3| > 4000 | |
| (3, 4) | 35.75 | 1048576| 6 | 57 | 17.8 | 21.7| > 4000 | |
| (3, 5) | 36.00 | 16777216| 7 | 88 | 272.1| 37.5| > 4000 | |
| (5, 2) | 35.75 | 65536 | 4 | 31 | 0.5 | 16.6| 20316.2 | 2343|
| (5, 3) | 35.75 | 4194304| 5 | 56 | 8.2 | 19.5| > 4000 | |
| (5, 4) | 35.75 | 268435456| 6 | 97 | 196.8| 31.3| > 4000 | |
| (5, 5) | 36.00 | 17179869184| 7 | 152 | 7098.4| 81.3| > 4000 | |
| Moats and castles | | | | | | | | |
| (2, 5) | 32.22 | 4096 | 3 | 49 | 1.8 | 17.3| 133.7 | 1202|
| (2, 6) | 32.22 | 16384 | 3 | 66 | 11.7 | 19.3| 2966.8 | 1706|
| (3, 3) | 59.00 | 4096 | 3 | 84 | 15.3 | 20.2| 149.6 | 1205|
| (3, 4) | 52.00 | 32768 | 3 | 219 | 150.8| 30.7| 14660.7 | 1611|
| (3, 5) | 48.33 | 262144 | 3 | 357 | 740.2| 49.1| > 4000 | |
| (3, 6) | 48.33 | 2097152| 3 | 595 | 11597.7| 145.8| > 4000 | |
| (4, 2) | 96.89 | 4096 | 3 | 132 | 43.7 | 26.5| 173.6 | 1211|
| (4, 3) | 78.67 | 65536 | 3 | 464 | 1594.5| 82.2| > 4000 | |
Expected mean-payoff with LTL synthesis

Results from [BBFR13]:

- Synthesis from LTL specifications with mean-payoff objectives
- Reduction to a 2-player safety game (SG)
 - between the system and its environment
 - equipped with a partial order (monotonic properties)
Expected mean-payoff with LTL synthesis

Results from [BBFR13]:

- Synthesis from LTL specifications with mean-payoff objectives
- Reduction to a 2-player safety game (SG)
 - between the system and its environment
 - equipped with a partial order (monotonic properties)

Goal: compute a **worst-case** winning strategy with **good expected performance**
Expected mean-payoff with LTL synthesis

Results from [BBFR13]:

- Synthesis from LTL specifications with mean-payoff objectives
- Reduction to a 2-player safety game (SG)
 - between the system and its environment
 - equipped with a partial order (monotonic properties)

Goal: compute a **worst-case** winning strategy with **good expected performance**

Idea:

- Replace the environment by a probability distribution in the SG restricted to winning states

\[\rightsquigarrow\textbf{Monotonic MDP}\]

- Symblicit algorithm for the expected mean-payoff problem
- Implementation in Acacia+
Experimental results

Comparison with an MTBDD based symblicit algorithm [VE13]

Figure: Execution time

⇒ Monotonic MDPs are better handled by pseudo-antichains

Figure: Memory consumption
Table of contents

Definitions

Symblicit approach

Antichains and pseudo-antichains

Monotonic Markov decision processes

Applications

Conclusion and future work
Conclusion and future work

Summary:

- New data structure of pseudo-antichains
- Symblicit algorithms in monotonic MDPs with a natural partial order
- Expected mean-payoff and stochastic shortest path
- Promising experimental results
Conclusion and future work

Summary:

- New data structure of **pseudo-antichains**
- Symblicit algorithms in monotonic MDPs with a **natural partial order**
- Expected mean-payoff and stochastic shortest path
- Promising experimental results

Future work:

- Implementation of a MTBDD based symblicit algorithm for the stochastic shortest path
- Apply pseudo-antichains in other contexts (e.g. model-checking of probabilistic lossy channel systems)
Thank you!

Questions?
References I

Aaron Bohy, Véronique Bruyère, Emmanuel Filiot, and Jean-François Raskin.
Synthesis from LTL specifications with mean-payoff objectives.
In Nir Piterman and Scott A. Smolka, editors, TACAS, volume 7795 of Lecture Notes in

Avrim L Blum and John C Langford.
Probabilistic planning in the graphplan framework.

D. P. Bertsekas and J. N. Tsitsiklis.
Neuro-Dynamic Programming.

Peter Buchholz.
Exact and ordinary lumpability in finite Markov chains.

Laurent Doyen and Jean-François Raskin.
Improved algorithms for the automata-based approach to model-checking.
In Orna Grumberg and Michael Huth, editors, TACAS, volume 4424 of Lecture Notes in

STRIPS: A new approach to the application of theorem proving to problem solving.
Ronald A. Howard.
Dynamic Programming and Markov Processes.

John G. Kemeny and J. L. Snell.
Finite Markov Chains.

Kim G. Larsen and Arne Skou.
Bisimulation through probabilistic testing.

Christian Von Essen.
personal communication, 20-11-2013.

Symblicit calculation of long-run averages for concurrent probabilistic systems.

Martin De Wulf, Laurent Doyen, Thomas A. Henzinger, and Jean-François Raskin.