Connecting Databases to Ontologies: A Data Quality Perspective.

Horacio Tellez, Jef Wijsen

Département d'Informatique University of Mons, Belgium

DBDBD 2019,'s-Hertogenbosch The Netherlands, 11 December 2019

Introduction

. . .

Description Logics and Databases

Descriptive Logics are useful to databases:

- inconsistency detection,
- knowledge representation,
- enhanced query answering,

Introduction

. . .

Description Logics and Databases

Descriptive Logics are useful to databases:

- inconsistency detection,
- knowledge representation,
- enhanced query answering,

Ontology-Based Database Access (OBDA) allows accessing a database by using an ontological vocabulary, expressed in some DL.

What are DLs and ontologies ?

- a knowledge representation formalism;
- adapted to a variety of situations;
- Description Logics is the language used to write ontologies;

What are DLs and ontologies ?

- a knowledge representation formalism;
- adapted to a variety of situations;
- Description Logics is the language used to write ontologies;

Why?

- a well developed and robust theory for reasoning;
- nice complexity properties;
- well adapted to the database world;

3 / 24

An easy to understand syntax with multitude of constructors:

function	symbol	interpretation
true	Т	$ op ^{\mathcal{I}}:=\Delta$
false	\perp	$\bot^{\mathcal{I}} := \emptyset$
unary relation (concept)	A	${\cal A}^{\cal I}\subseteq \Delta$
binary relation (role)	r	$r^\mathcal{I} \subseteq \Delta imes \Delta$
and	$C_1 \sqcap C_2$	$\mathcal{C}_1^\mathcal{I} \cap \mathcal{C}_2^\mathcal{I}$
or	$C_1 \sqcup C_2$	$\mathcal{C}_1^\mathcal{I} \cup \mathcal{C}_2^\mathcal{I}$
negation	$\neg C$	$\Delta ackslash \mathcal{C}^{\mathcal{I}}$
inverse role	r	$(a,b)\in (r^-)^\mathcal{I}\Leftrightarrow (b,a)\in r^\mathcal{I}$
'exists' quantifier	$\exists r.C$	$\{x \mid \exists y \in C^{\mathcal{I}} \land (x, y) \in r^{\mathcal{I}}\}$
'for all' quantifier	$\forall r.C$	$\{x \mid \forall y \ (x, y) \in r^{\mathcal{I}} \Rightarrow y \in C^{\mathcal{I}}\}$
functionality	func(r)	$(x,y)\in r^{\mathcal{I}}\wedge (x,z)\in r^{\mathcal{I}}\Rightarrow y=z$
transitivity	trans(r)	$(x,y)\in r^{\mathcal{I}}\wedge(y,z)\in r^{\mathcal{I}}\Rightarrow(x,z)\in r^{\mathcal{I}}$
numeric restriction	$(\leq n)r.C$	$\{x \mid card(\{y \mid (x,y) \in r^\mathcal{I}\}) \le n\}$
constants	$\{a\}$	$a^{\mathcal{I}} \in \Delta$

4 / 24

EL: ⟨∃ | □ | ⊤⟩; *DL*- *Lite*: ⟨∃ | ¬ | ⊤⟩ *FL*: ⟨∀ | ⊔ | ⊤⟩; *ALC*: ⟨∃ | ∀ | □ | ⊔ | ¬⟩ *S*: *ALC*+ *trans*;

6 SHOIQ : S + hierarchy + inverse + numeric restriction + constants.

A bigger number mean a bigger (more or less) expressivity of the current logic.

Ontology

An ontology $\langle \mathcal{T}, \mathcal{A} \rangle$ is composed of two parts:

$\mathsf{TBox}\;\mathcal{T}$

Store our knowledge about the studied phenomena. {Person $\sqsubseteq \neg Book$, *motherof* \subseteq *parentof*}

$\mathsf{ABox}\ \mathcal{A}$

Store our knowledge about individuals. {Book(Romeo and Juliet), Person(Romeo)} It behaves itself *almost* as a database.

Ontology

An ontology $\langle \mathcal{T}, \mathcal{A} \rangle$ is composed of two parts:

$\mathsf{TBox}\;\mathcal{T}$

Store our knowledge about the studied phenomena. {Person $\sqsubseteq \neg Book$, *motherof* \subseteq *parentof*}

$\mathsf{ABox}\ \mathcal{A}$

Store our knowledge about individuals. {Book(Romeo and Juliet), Person(Romeo)} It behaves itself *almost* as a database.

Open world assumption

A fact α is only false for an ontology $\langle \mathcal{T}, \mathcal{A} \rangle$ if it is incompatible:

 $\langle \mathcal{T}, \mathcal{A} \rangle \land \alpha \models \bot.$

Not so hidden difficulty

DLs possess powerful tools for reasoning:

- inference;
- conflicts detection;
- low complexity;

Not so hidden difficulty

DLs possess powerful tools for reasoning:

- inference;
- conflicts detection;
- low complexity;

ABoxes are not regular databases. All relation are at most of binary arity in DLs.

OBDA

Specification

An OBDA specification is a triple $(\Sigma, \mathcal{M}, \mathcal{T})$ where

- Σ is a set of constraints over a (fixed) database schema;
- *M* is a set of mapping rules, defining how database facts map to ABox assertions; and
- \mathcal{T} is a TBox in some DL.

OBDA

Specification

An OBDA specification is a triple $(\Sigma, \mathcal{M}, \mathcal{T})$ where

- Σ is a set of constraints over a (fixed) database schema;
- *M* is a set of mapping rules, defining how database facts map to ABox assertions; and
- \mathcal{T} is a TBox in some DL.

OBDA Semantics

- Given a database instance db, we write M(db) for the ABox generated from db by applying the rules in M.
- (*T*, *M*(**db**)) is a knowledge base, which can be queried, checked for consistency...

8 / 24

• Often, but not always, **db** is assumed to be consistent w.r.t. Σ .

Design Questions

- What is a "good" mapping language? This paper. Criteria: expressiveness, complexity, user-friendliness...
- Can we reconcile closed-world semantics of databases with open-world semantics of DLs?
- How to deal with inconsistent databases?

Common Formalism for Mapping Rules

Mapping

$\forall \vec{x} \left(\varphi(\vec{x}) \rightarrow \psi(\vec{x}) \right)$

- the body arphi is a conjunction of atoms over the database schema;
- the head ψ is an atom over the vocabulary (concept names and role names) of the ontology.

Common Formalism for Mapping Rules

Mapping

$\forall \vec{x} \left(\varphi(\vec{x}) \rightarrow \psi(\vec{x}) \right)$

- the body φ is a conjunction of atoms over the database schema;
- the head ψ is an atom over the vocabulary (concept names and role names) of the ontology.

Questions

- Can we add negation to the body without running into undecidability of important reasoning problems?
- Can we have a variable-free formalism alike DLs?
- Is it natural to have the same syntax for concept-generating and role-generating rules?

Our Choice for Rule Bodies: Semijoin Algebra

Semijoin Algebra

• Subset of the relational algebra

Our Choice for Rule Bodies: Semijoin Algebra

Semijoin Algebra

- Subset of the relational algebra
- Operators:
 - selection σ , projection π , attribute renaming δ , union \cup , difference -;

Our Choice for Rule Bodies: Semijoin Algebra

Semijoin Algebra

- Subset of the relational algebra
- Operators:
 - selection σ , projection π , attribute renaming δ , union \cup , difference -;
 - the join operator is replaced with the (left) semijoin operator ⋉:
 R ⋉ *S* returns the tuples in *R* that join with some tuple in *S*.

Semijoin Algebra

Syntax and semantics

- single relation: $t \in R^{db}$;
- union: $t \in (E_1 \cup E_2)^{\mathsf{db}} \Leftrightarrow t \in E^{\mathsf{db}} \lor t \in E^{\mathsf{db}}$
- difference: $t \in (E_1 E_2)^{\mathbf{db}} \Leftrightarrow t \in E_1^{\mathbf{db}} \land \neg t \in E_2^{\mathbf{db}}$;

selection

- value-based: $t \in \sigma_{A=c}E \Leftrightarrow t \in E^{\mathbf{db}} \wedge t[A] = c;$
- attribute-based: $t \in \sigma_{A=B}E \Leftrightarrow t \in E^{\mathsf{db}} \land t[A] = t[B];$
- projection: $t \in (\pi_X E)^{\mathbf{db}} \Leftrightarrow t \in E^{\mathbf{db}} \land sort(t) = X;$
- attribute renaming: $t \in (\delta_{A \to B} E)^{\mathbf{db}} \Leftrightarrow \exists t' \in E^{\mathbf{db}}, \forall C \in sort(E) \setminus \{A\}, t[C] = t'[C] \land t'[A] = t[B];$
- semijoin: $t \in (E_1 \ltimes E_2)^{\mathbf{db}} \Leftrightarrow$ $t \in E_1^{\mathbf{db}} \land \exists t' \in E_2^{\mathbf{db}}, \forall C \in sort(E_1) \cap sort(E_2), t[C] = t'[C].$

Entity-Expressions and Concept-generating rules

Entity-Expression (EE)

Every expression in the semijoin algebra is an EE.

We use the term Database-to-ABox Dependency (DAD) for rules mapping database facts to ABox assertions.

Entity-Expressions and Concept-generating rules

Entity-Expression (EE)

Every expression in the semijoin algebra is an EE.

We use the term Database-to-ABox Dependency (DAD) for rules mapping database facts to ABox assertions.

CDAD: Concept-generating rule

If E is an EE and C is a concept name, then E : C is a CDAD.

Informal meaning: if t is a tuple in E, then add the concept assertion t : C.

Relationship-Expressions and Role-generating rules

Relationship-Expression (RE)

- every EE is an RE;
- if E_1 , E_2 are EEs, then $E_1 \bowtie E_2$ is an RE.

Relationship-Expressions and Role-generating rules

Relationship-Expression (RE)

- every EE is an RE;
- if E_1 , E_2 are EEs, then $E_1 \bowtie E_2$ is an RE.

RDAD: Role-generating rules

If E_1 , E_2 are EEs and E is an RE, then $[E_1, E_2, E]$: r is a RDAD.

Informal meaning: if t_1 and t_2 are tuples in, respectively, E_1 and E_2 such that t_1 and t_2 occur together in E, then add the role assertion $(t_1, t_2) : r$.

- $(R \cup S \cup T)$: KnownData;
- $(\sigma_{B=C}S)$: \bot ;
- $((\pi_C R \cup \pi_C S) \pi_C T)$:GoodC;
- $(R \ltimes T)$: InterestingR;
- $[\pi_{A,B}R, \pi_{C,D}S, R \bowtie S]$: *RtoS*

Creating Individual Names

- We assume a one-one correspondence between database tuples (with attribute names) and DL individual names.
- Attribute names allow distinguishing between individuals that are value-wise the same: for example, on the DL side,

{*Firstname* : Paris, *Lastname* : Hilton} and {*City* : Paris, *Hotel* : Hilton}

are treated as distinct (and atomic) individual names.

Creating Individual Names

- We assume a one-one correspondence between database tuples (with attribute names) and DL individual names.
- Attribute names allow distinguishing between individuals that are value-wise the same: for example, on the DL side,

```
{Firstname : Paris, Lastname : Hilton}
and
{City : Paris, Hotel : Hilton}
```

are treated as distinct (and atomic) individual names.

Possible encoding

{*City*, *Firstname*, *Hotel*, *Lastname*} \longrightarrow (x_1, x_2, x_3, x_4):

• {*Firstname* : Paris, *Lastname* : Hilton} \rightarrow (ε , Paris, ε , Hilton);

• {*City* : Paris, *Hotel* : Hilton} \rightarrow (Paris, ε , Hotel, ε).

 $\mathcal{M} + d\mathbf{b}$

- $(R \cup S \cup T)$:KnownData;
- $((\pi_C R \cup \pi_C S) \pi_C T)$:GoodC; $(R \ltimes T)$:InterestingR;
- $[\pi_{A,B}R, \pi_{C,D}S, R \bowtie S]$: *RtoS*;

 $(\sigma_{B=C}S):\perp;$

$\mathcal{M}(\mathbf{db})$

$$\begin{aligned} &\mathsf{KnownData} = \{(a, b, c, \varepsilon, \varepsilon, \varepsilon), (d, e, f, \varepsilon, \varepsilon, \varepsilon), (\varepsilon, b, c, e, \varepsilon, \varepsilon), \\ & (\varepsilon, b, b, m, \varepsilon, \varepsilon), (\varepsilon, \varepsilon, l, \varepsilon, e, d), (\varepsilon, \varepsilon, f, \varepsilon, g, g)\} \\ &\mathsf{GoodC} = \{(\varepsilon, \varepsilon, c, \varepsilon, \varepsilon, \varepsilon), (\varepsilon, \varepsilon, b, \varepsilon, \varepsilon, \varepsilon)\} \\ & \bot = \{(\varepsilon, b, b, \varepsilon, \varepsilon, \varepsilon)\} \\ &\mathsf{InterestingR} = \{(d, e, f, \varepsilon, \varepsilon, \varepsilon)\} \\ &\mathsf{RtoS} = \{((a, b, \varepsilon, \varepsilon, \varepsilon, \varepsilon), (\varepsilon, \varepsilon, c, e, \varepsilon, \varepsilon))\} \end{aligned}$$

Discussion

- Intuitive syntax without first-order variables;
- negation allowed in the body of rules;

Discussion

- Intuitive syntax without first-order variables;
- negation allowed in the body of rules;
- as for expressive power,
 - the semijoin algebra is (almost) the guarded fragment of first-order logic;
 - our mapping rules are incomparable with CQ (because joins are disallowed in CDADs).

- Ontology-based data access (OBDA)
- Data quality:

T Focus of this paper.

- Detect dirty data by confronting the data in the database to the ontological "ground truth."
- Discover conflicts between database constraints and the ontological TBox.
- Infer missing database constraints from the ontological TBox.
- ...

Data Quality Questions

Satisfiability

Given $(\Sigma, \mathcal{M}, \mathcal{T})$, is there a database **db** such that **db** $\models \Sigma$ and the knowledge base $(\mathcal{T}, \mathcal{M}(db))$ is consistent?

Data Quality Questions

Satisfiability

Given $(\Sigma, \mathcal{M}, \mathcal{T})$, is there a database **db** such that **db** $\models \Sigma$ and the knowledge base $(\mathcal{T}, \mathcal{M}(db))$ is consistent?

Non-Protection

Given $(\Sigma, \mathcal{M}, \mathcal{T})$, is there a database **db** such that **db** $\models \Sigma$ but the knowledge base $(\mathcal{T}, \mathcal{M}(\mathbf{db}))$ is inconsistent?

Informally, a "yes"-answer means that the ontological TBox contains some knowledge not present in the database constraints.

Result

Theorem

Both problems *Satisfiability* and *Non-Protection* are decidable in EXPTIME if their input OBDA specifications $(\Sigma, \mathcal{M}, \mathcal{T})$ are restricted in the following way :

- Σ can be expressed in the guarded fragment;
- \mathcal{T} can be expressed in the guarded fragment:
 - DL- Lite family;
 - \mathcal{EL} family;
 - ALC;
 - ...

• all Relationship-Expressions in \mathcal{M} are join-free.

Contributions

Our framework

- Mapping rules with rule bodies in the semijoin algebra (which can be embedded in the *guarded fragment*);
- syntax without first-order variables;
- distinction between concept-generating and role-generating rules;
- only link between databases and ontologies is *M*;
- some important reasoning problems are decidable.

Future work

- Complexity of the satisfiability problem for Relationship-Expressions with joins;
- database repairing in the case that the database is inconsistent;
- database repairs with both closed-world and open-world assumptions;
- consistent query answering;

Thanks!