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1 Introduction

Linear systems of equations are maybe the most used framework to solve dy-
namic systems, or at least approximate a model when exactly solving is out of
the question. Not only in physics but biology, sociology and a recurrent tool on
general mathematics. An example of practical use is [PW20].

Here we propose a concept related to solutions of such systems. We show also
how to compute some numerical constants that allow for this new notion to be
found in tractable time.

Suppose you have an square matrix where the diagonal is all zeroes: M =0 2 3
4 0 6
7 8 0

. If you have three non null positive real numbers a, b, c then this setting

defines a linear equation system:

a ∗ 1 + b ∗M = c ∗ (1, ...., 1), (1)

which can have or not a solution. A sufficient condition is for example
∣∣ b
a

∣∣ ‖M‖ <
1, where ‖.‖ is some norm on the space of matrices.

In any case suppose you have several solutions X1, ...Xn and you are inter-
ested on knowing if they are ordered in a similar fashion. What do we mean by
order ? Let

– X1 = (1, 2, 3);
– X2 = (3, 33, 34); and
– X3 = (33, 35, 34)

be some solutions. Then X1 and X2 have composants that induce the same order
on the set {1, 2, 3} but X3 does not. Let’s formalize.

Definition 1. Let x, y ∈ Rn be vectors, we say that x, y are rank-equivalent if
the following hold:

∀1 ≤ i, j ≤ n, xi < xj ⇔ yi < yj .
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From a pure mathematical point of view this notion is not more important
than one other. From a practical point of view we can have several applications
however. A matrix such a one defined previously can be viewed as an interaction
matrix between the nodes of a graph.

The weighted adjacency matrix of this graph

n1

n2

n3
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8

is the matrix M discussed above.
Under this assumptions the a, b are the “potential” of nodes, that is a is

how well we take into account the quality of importance of a node and b is the
importance that we give to the interaction between different nodes. A solution
to the system in 1 is the a weight given to each node so the interactions of the
graph in 1 are stable.

If your aim is to find such weights, then an interest that easily come along is
their order, which node has a higher weight, and if possibly, an ordering of every
node. Of course, once you have a solution then this order is explicit.

2 Results

The more challenging task is to know how parameters a, b, c influence this or-
der in the composants of the solution. First of all, the c parameter is clearly
unimportant for this question. If xc is a solution to 1 and xc′ a solution to

a ∗ 1 + b ∗M = c′ ∗ (1, ...., 1), (2)

then (recall all parameters are non zero and positive) xc = c
c′xc′ and the solutions

are clearly rank-equivalent. Thus, we assume c = 1 for the rest of the paper. The
system looks like this now:

a ∗ 1 + b ∗M = (1, ...., 1).
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Second reduction that we can make, non zero parameters still, is to divide
by a, we get

1 +
b

a
∗M = (1, ...., 1),

and putting t = b
a we find a sole parameter that can influence the ranking of

vector, this new system is what we are interested in:

1 + t ∗M = (1, ...., 1), (3)

We have an immediate result.

Theorem 1 (Convergence). Let M be an N × N matrix whose diagonal el-
ements are zero. Let b, c ∈ R. Consider the following equation with real-number
parameter a:

(a ∗ 1− b ∗M) ·X =
[
c · · · c

]ᵀ
. (4)

Then there exists a∗ ∈ R such that

– for every a ≥ a∗, the equation (4) has a unique solution; and
– for all a1, a2 ≥ a∗, if X1 and X2 are solutions to (4) for parameters a1 and
a2 respectively, then X1 and X2 are rank-equivalent.

Moreover, such a bound a∗ can be computed in polynomial time in the size of N .

Proof. Clearly, if xc is the solution to

(a ∗ 1− b ∗M) ·X = c ∗
[
1 1 · · · 1

]ᵀ
with c > 0, and x1 is the solution to

(a ∗ 1− b ∗M) ·X =
[
1 1 · · · 1

]ᵀ
,

then xc = c ∗ x1. Since xc and x1 are rank-equivalent, we can fix c = 1 without
loss of generality. Define a′ as follows:

a′ := 1 + |b| ∗ (N − 1)

(
max

1≤i,j≤N
|Mij |

)
.

By the Levy-Desplanques theorem, for every a ≥ a′, the matrix a ∗ 1− b ∗M is
invertible. For every a ≥ a′, we write xa for the unique solution of the equation

(a ∗ 1− b ∗M) ·X =
[
1 1 · · · 1

]ᵀ
.

For a ≥ a′, define δij(a) := xai − xaj , where xai is the ith coordinate of xa.
We will show that there is a value a∗ ≥ a′ such that for all a1, a2 ≥ a∗, for

all 1 ≤ i < j ≤ N , δij(a1) and δij(a2) have the same sign, which implies that
xa1 and xa2 are rank-equivalent.

Define the following matrix S|i in function of a, for 1 ≤ i ≤ N :

(S|i(a))`k =

{
(a ∗ 1− b ∗M)`k if k 6= i

1 if k = i
(5)
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That is, S|i is obtained from a ∗ 1 − b ∗ M by replacing the ith column with[
1 1 · · · 1

]ᵀ
. By Cramer’s Rule, we have

xai =
det
(
S|i(a)

)
det (a ∗ 1− b ∗M)

, (6)

and consequently

δij(a) =
det
(
S|i(a)

)
− det

(
S|j(a)

)
det (a ∗ 1− b ∗M)

. (7)

Since the determinants det (·) are polynomial expressions, the following are all
polynomials of degree at most N :

– pi(a) = det
(
S|i(a)

)
;

– pj(a) = det
(
S|j(a)

)
; and

– p(a) = det (a ∗ 1− b ∗M).

If a ≥ a′, then since the polynomial p(a) does not vanish, the sign of δij(a) is
fully determined by the expression

det
(
S|i(a)

)
− det

(
S|j(a)

)
. (8)

Let pij = pi − pj for 1 ≤ i < j ≤ N . We determine a∗ such that for all
a ≥ a∗ and for all 1 ≤ i < j ≤ N , the sign of pij(a) does not change (i.e., is
either always positive or always negative). Note that the sign of pij not changing
is equivalent to the sign of pji not changing, so we can assume i < j without
loss of generality.

In the remainder of the proof, we show that the desired a∗ exists and can be
computed in polynomial time in N . Pick N+1 real numbers V = {a1, . . . , aN+1},
all greater than a′. Compute

pij(ak) = det
(
S|i(ak)

)
− det

(
S|j(ak)

)
(9)

for all ak ∈ V and 1 ≤ i < j ≤ N . The set

{pij(ak) | 1 ≤ i < j ≤ N, 1 ≤ k ≤ N + 1}

can be computed in polynomial time in N , because it involves N(N +1) determi-
nants (i.e., det

(
S|i(ak)

)
for 1 ≤ i ≤ N and 1 ≤ k ≤ N + 1), each of which can

be computed in polynomial time in N . For all 1 ≤ i < j ≤ N , the polynomial
pij can be computed from {(a1, pij(a1)), . . . , (aN+1, pij(aN+1))} in polynomial
time using, for example, Lagrange interpolation. The number of polynomials to

compute is N(N−1)
2 (i.e., polynomially many), and each of them has at most

N coefficients. We will represent the polynomial pij by its coefficients, i.e., by
〈(pij)0, . . . , (pij)nij 〉 where each (pij)` is the coefficient of degree `, and nij ≤ N
is the polynomial’s degree. We now define a∗ij as

a∗ij := max

(
a′, 2 + max

0≤`≤nij−1

−(pij)`
|(pij)nij

|

)
.
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By Cauchy’s bound on positive real roots of polynomials, if x0 is a root of pij,
then x0 < a∗ij. This implies that if a1, a2 > a∗ij, then pij(a1) and pij(a2) have the
same sign (i.e., either both positive or both negative), and therefore, by definition
of δij, we have xa1

i < xa1
j if and only if xa2

i < xa2
j . Finally, let

a∗ = max
1≤i<j≤N

a∗ij ,

which can be computed in polynomial time. By our construction, if follows that
for all a1, a2 > a∗, the solutions xa1 , xa2 exist and are rank-equivalent.

Finally, we incidentally note that a slightly better bound is obtained by letting

a∗ = max

(
a′, 2 + max

1≤i<j≤N,0≤`≤nij−1

−(pij)`
|(pij)nij

|

)
. (10)

This concludes the proof. ut

3 Implementation

If people are patient we will explain how to accurately and quickly compute the
coefficients needed in 1. Recall that coefficient of an interpolation polynomial
are given by a Vandermonde matrix, that are famously ill-conditioned [Pan16].
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