
Don’t Hold My Data Hostage - A Case For Client Protocol
Redesign

Mark Raasveldt
Centrum Wiskunde & Informatica

Amsterdam, The Netherlands
m.raasveldt@cwi.nl

Hannes Mühleisen
Centrum Wiskunde & Informatica

Amsterdam, The Netherlands
hannes@cwi.nl

Netcat (0.23s)

12.912.912.912.9

12.112.112.112.1

24.624.624.624.6

13.913.913.913.9

9.89.89.89.8

5.95.95.95.9

7.47.47.47.4

11.411.411.411.4

Hive

MonetDB

DB2

DBMS X

PostgreSQL

MongoDB

MySQL+C

MySQL

0 10 20
Wall clock time (s)

Operation
Connection
Printing
Query Execution
RSS + Transfer

Figure 1: Wall clock time for retrieving and printing 1M
lineitem entries from a local database. The dashed line is
the wall clock time for netcat to transfer a CSV of the data.

ABSTRACT
Transferring a large amount of data out of a database system
to a client program is a common task. Examples include
complex statistical analysis or machine learning applications
that need access to large samples for model construction
or verification. However, that operation is expensive. It is
even more costly if the data is transported over a network
connection, which is necessary if the database server runs on
a separate machine or in the cloud.

Result set serialization has a significant impact on over-
all system performance. Figure 1 shows the time taken to
run the simple SQL query “SELECT * FROM lineitem” on
various data management systems. We can see large dif-
ferences between systems and disappointing performance
overall. Modern data management systems need a significant
amount of time to transfer a small amount of data from the
server to the client, even when they are located on the same
machine.

Because of the large cost of data export, many analysts
settle for exporting small samples from the database. This
way, data export is not a bottleneck in their analysis pipelines.

However, this reduces the accuracy of their machine learning
and classification algorithms.

The issue of slow result export has been identified before.
A large amount of previous work focuses on avoiding data
export by performing the computations in the database
instead of exporting the data. However, these solutions
require large, system-specific, overhauls of existing pipelines
and are difficult to implement and optimize. There is little to
no scientific work done on improving result set serialization.

In this paper, we perform a rigorous examination on the
design of existing client protocols. We analyse how they per-
form when transferring various data sets in different network
scenarios, and examine why they show this performance.
We explore the design space of client protocols with exper-
iments, and look at the different trade-offs that are made
when designing a client protocol.

The main contributions of this paper are:

• We benchmark the result set serialization methods
used by major database systems, and measure how
they perform when transferring large amounts of data
in different network environments. We explain how
these methods perform result set serialization, and
discuss the deficiencies of their designs that make them
inefficient for transfer of large amounts of data.

• We explore the design space of result set serialization
and investigate numerous techniques that can be used
to create an efficient serialization method. We exten-
sively benchmark these techniques and discuss their
advantages and disadvantages.

• We propose a new column-based serialization method
that is suitable for exporting large result sets. We
implement our method in the Open-Source database
system MonetDB, and demonstrate that it performs
an order of magnitude better than the state of the art.
The implementation of our method is available as Open
Source software.

1


