
Incremental evaluation of updates in factorized in-memory
databases

Muhammad Idris, Martin Ugarte, Stijn Vansummeren
Universite libre de Bruxelles

Emails: {muhammad.idris, martin.ugarte, stijn.vansummeren} @ulb.ac.be

1 Abstract

Incremental view maintenance (IVM) is an established research area in the database and data-warehousing
communities. In conventional IVM practices, query results are incrementally maintained to compute the delta
of the query result, which is cheaper than full recomputation. A recent work in the DBToaster project [1, 4, 3]
presents higher order IVM to maintain in-memory views under dynamic updates. It is based on the observation
that when existing database D is modified with update u, the delta of the result Q(D+u)−Q(D) can itself be
expressed as a query ∆Q, whose results itself can be maintained. Updates to the result of ∆Q can be computed
in a second order delta of Q, denoted ∆2Q, which again can be maintained and so on untill a finite kth order
delta. Instead of evaluating Q on the new database D + u, we are interested in computing only the ∆nQ for
1 ≤ n ≤ k. However, materilizing each ∆nQ quickly leads to a memory bottleneck, as we show.

In this research, we investigate so-called factorized representations of query results for continuous queries.
Unlike relational databases, factorized representations, as presented by Oltenu et al. [2], are expressions where
each expression item is either: a unary relation consisting of single data item, union of two expressions, or a
product of two expressions. These are succinct representations where the product elements are distributed over
unions. An example expression f of the join result of Q = R(A,B) ./ S(B,C,D) ./ T (D,E) in Table 1 is given in
the following.

Table 1: Q=R ./ S ./ T

A B C D E

a1 b1 c1 d1 e1

a1 b1 c1 d1 e2

a2 b2 c2 d2 e1

a2 b2 c2 d2 e3

a2 b2 c3 d4 e5

a3 b3 c3 d3 e3

a3 b4 c3 d3 e4

f = a1 × b1 × c1 × d1 × (e1 ∪ e2)∪
a2 × b2 × (c2 × d2 × (e1 ∪ e3) ∪ c3 × d4 × e5)∪
a3 × (b3 × (c3 × d3 × e3) ∪ b4 × (c3 × d3 × e4))

This representation exploits the dependency of attributes in a relation and
the join of multiple relations can be represented as a join factorization
tree where each relation is a hyperedge. While the existing works study
factorizations for static data, we investigate incremental evaluation of up-
dates on factorized representations. We employ a novel join tree de-
composition method to reduce the memory footprints of a conjunctive
query to linear in the size of input relations. Our algorithm is orders
of magnitude more efficient in query evaluation time and memory foot-
prints for full join queries, and approximately 2x times faster for aggregate
queries.

References

[1] Yanif Ahmad and Christoph Koch. Dbtoaster: A sql compiler for high-performance delta processing in
main-memory databases. Proc. VLDB Endow., 2(2):1566–1569, August 2009.

[2] Nurzhan Bakibayev, Dan Olteanu, and Jakub Závodnỳ. Fdb: A query engine for factorised relational
databases. Proceedings of the VLDB Endowment, 5(11):1232–1243, 2012.

[3] Christoph Koch. Incremental query evaluation in a ring of databases. In Proceedings of the Twenty-ninth
ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems, PODS ’10, pages 87–98,
New York, NY, USA, 2010. ACM.

[4] Christoph Koch, Yanif Ahmad, Oliver Kennedy, Milos Nikolic, Andres Nötzli, Daniel Lupei, and Amir
Shaikhha. Dbtoaster: higher-order delta processing for dynamic, frequently fresh views. VLDB J., 23(2):253–
278, 2014.

1


