Accelerating Process Mining using Relational Databases

Alifah Syamsiyah

Eindhoven University of Technology

Process Mining

Process Mining

Process Science

Data Mining
Machine Learning
Distributed Systems

Process Science

Data Mining
Machine Learning
Distributed Systems

Process Science

Process Mining

"process agnostic"

Data Mining
Machine Learning
Distributed Systems

Process Science

Business Process Management
Workflow Management
Optimization

"process agnostic"

Data Mining
Machine Learning
Distributed Systems

Process Mining

Process Mining

Process Science

Business Process Management
Workflow Management
Optimization

"model-driven"

"process agnostic"

Data Mining
Machine Learning
Distributed Systems

"process agnostic"

Process Mining

Process Science

Business Process Management
Workflow Management
Optimization

"model-driven"

"to turn *event data* into insights and actions in order to improve *processes*"

Process Model

- < Register, X-Ray, Take medicine >,
- < Register, MRI scan, Take medicine >,

• • •

- < Register, X-Ray, Take medicine >,
- < Register, MRI scan, Take medicine >,

• • •

Event Step 1
Data

< Register, X-Ray, Take medicine >

< Register, X-Ray, Take medicine > < Register, X-Ray, 1 >

< Register, X-Ray, Take medicine >

< Register, X-Ray, 1 >

< X-Ray, Take medicine, 1 >

"The use of Relational Databases to pre-process event data can accelerate process mining while maintaining its scalability"

- (1) Initialize
- (2) Update
- (3) Get Directly Follows Relation (DFR)

- (1) Initialize
- (2) Update
- (3) Get Directly Follows Relation (DFR)
- (4) Get process model

50

0

Memory Use Comparison 9 8 7 6 5 4 3 2 1

150

200

100

#traces, events, attributes (million)

[&]quot;Database approach with DFR uses less memory compared to others"

[&]quot;Database approach with DFR uses less memory compared to others"

Memory Use Comparison 9 8 7 Memory (GB) database database with DFR 3 log 2 1 0 50 100 150 200 0 #traces, events, attributes (million)

"Database approach with DFR uses less memory compared to others"

"Database approach with DFR needs less CPU time compared to others"

"The use of Relational Databases to pre-process event data can accelerate process mining while maintaining its scalability"

Thank you

Alifah Syamsiyah

Email: a.syamsiyah@tue.nl

Project website: https://www.win.tue.nl/ais/doku.php?id=research:projects:delibida

"The use of Relational Databases to pre-process event data can accelerate process mining while maintaining its scalability"

