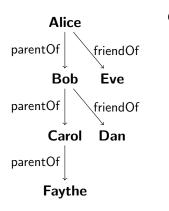
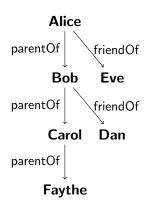

Graph query optimization using semi-join rewritings

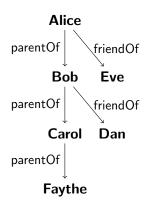

Jelle Hellings¹ jelle.hellins@uhasselt.be

Hasselt University, Martelarenlaan 42, 3500 Hasselt, Belgium

 $^{^1\}mbox{Joint}$ work with Catherine L. Pilachowski, Dirk Van Gucht, Marc Gyssens, and Yuqing Wu.



Query: 'Great-grandparents and their friends'


Query: 'Great-grandparents and their friends'

► (Great-grandparents, descendant): parentOf ∘ parentOf ∘ parentOf

Query: 'Great-grandparents and their friends'

- ► (Great-grandparents, descendant): parentOf ∘ parentOf ∘ parentOf
 - Great-grandparents: $\pi_1[parentOf \circ parentOf \circ parentOf]$

Query: 'Great-grandparents and their friends'

- ► (Great-grandparents, descendant): parentOf ∘ parentOf ∘ parentOf
- Great-grandparents: π_1 [parentOf \circ parentOf \circ parentOf]
- Complete query: π_1 [parentOf $\circ \cdots \circ$ parentOf] \circ friendOf

Graph Query Language

$\mathrm{id} \mid \mathrm{di} \mid \ell \mid \ell^{\frown} \mid \pi_{j}[e] \mid \overline{\pi}_{j}[e] \mid e \circ e \mid e \cup e \mid e \cap e \mid e - e \mid [e]^{*}$

Regular Path Queries

Graph Query Language

$\mathrm{id} \mid \mathrm{di} \mid \ell \mid \ell^{\frown} \mid \pi_{j}[e] \mid \overline{\pi}_{j}[e] \mid e \circ e \mid e \cup e \mid e \cap e \mid e - e \mid [e]^{*}$

- Regular Path Queries
- Nested Regular Path Queries

Graph Query Language

$\mathrm{id} \mid \mathrm{di} \mid \ell \mid \ell^{\frown} \mid \pi_{j}[e] \mid \overline{\pi}_{j}[e] \mid e \circ e \mid e \cup e \mid e \cap e \mid e - e \mid [e]^{*}$

- Regular Path Queries
- Nested Regular Path Queries
- ▶ FO[3] augmented with transitive closure:

graph-navigational core of XPath, GXPath, SPARQL, ...

$\mathrm{id} \mid \mathrm{di} \mid \ell \mid \ell^{\frown} \mid \pi_{j}[e] \mid \overline{\pi}_{j}[e] \mid e \circ e \mid e \cup e \mid e \cap e \mid e - e \mid [e]^{*}$

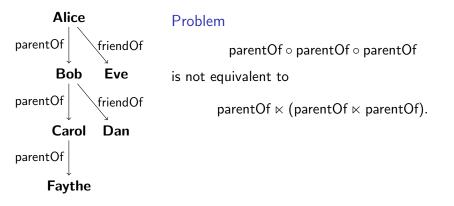
$\mathrm{id} \mid \mathrm{di} \mid \ell \mid \ell^{\frown} \mid \pi_{j}[e] \mid \overline{\pi}_{j}[e] \mid e \circ e \mid e \cup e \mid e \cap e \mid e - e \mid [e]^{*}$

'Easy to evaluate'

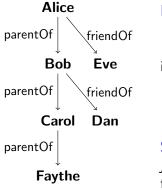
$\mathrm{id} \mid \mathrm{di} \mid \ell \mid \ell^{\frown} \mid \pi_{j}[e] \mid \overline{\pi}_{j}[e] \mid e \circ e \mid e \cup e \mid e \cap e \mid e - e \mid [e]^{*}$

- 'Easy to evaluate'
- 'Expensive to evaluate'

$\mathrm{id} \mid \mathrm{di} \mid \ell \mid \ell^{\frown} \mid \pi_{j}[e] \mid \overline{\pi}_{j}[e] \mid e \circ e \mid e \cup e \mid e \cap e \mid e - e \mid [e]^{*}$


- 'Easy to evaluate'
- 'Expensive to evaluate'

Idea: add partial alternatives for \circ and $\left[\cdot\right]^*$


 $\pi_1[\mathsf{parentOf} \circ \mathsf{parentOf} \circ \mathsf{parentOf}] \circ \mathsf{friendOf}$ can be rewritten into

 π_1 [parentOf \ltimes (parentOf \ltimes parentOf)] \rtimes friendOf.

Query Optimization by rewriting?

Query Optimization by rewriting?

Problem

 $parentOf \circ parentOf \circ parentOf$

is not equivalent to

parentOf \ltimes (parentOf \ltimes parentOf).

Solution

j-test-equivalent rewriting: we have $e_1 \equiv_j e_2$, if, for every graph \mathcal{G} ,

$$\pi_j[e_1]\langle \mathcal{G}\rangle = \pi_j[e_2]\langle \mathcal{G}\rangle.$$

- Rewrite \circ into \ltimes and \rtimes
- ▶ Rewrite [·]* into fp_{j,𝔅}[·; ·] (fixpoint iteration)

$$\begin{split} \mathrm{id} \mid \mathrm{di} \mid \ell \mid \ell^{\frown} \mid \pi_{j}[e] \mid \overline{\pi}_{j}[e] \mid e \circ e \mid e \cup e \mid e \cap e \mid e - e \mid [e]^{*} \mid \\ e \ltimes e \mid e \rtimes e \mid \mathfrak{N} \mid \mathsf{fp}_{j,\mathfrak{N}}[e; \ e] \end{split}$$

- Rewrite \circ into \ltimes and \rtimes
- ▶ Rewrite [·]* into fp_{j,𝔅}[·; ·] (fixpoint iteration)

 $\underline{\operatorname{id}} \mid \underline{\operatorname{di}} \mid \underline{\ell} \mid \underline{\ell}^{\frown} \mid \underline{\pi_j[e]} \mid \overline{\pi_j[e]} \mid e \circ e \mid \underline{e \cup e} \mid \underline{e \cap e} \mid \underline{e - e} \mid [e]^* \mid \\ \underline{e \ltimes e} \mid \underline{e \rtimes e} \mid \mathfrak{N} \mid \mathsf{fp}_{j,\mathfrak{N}}[e; e]$

Analysis

▶ FO[2]

- Rewrite \circ into \ltimes and \rtimes
- ▶ Rewrite [·]* into fp_{j,𝔅}[·; ·] (fixpoint iteration)

$$\underline{\operatorname{id}} \mid \underline{\operatorname{di}} \mid \underline{\ell} \mid \underline{\ell} \cap \mid \underline{\pi_j[e]} \mid \overline{\pi_j[e]} \mid e \circ e \mid \underline{e \cup e} \mid \underline{e \cap e} \mid \underline{e - e} \mid [\underline{e}]^* \mid \underline{e \ltimes e} \mid \underline{e \rtimes e} \mid \underline{\mathfrak{N}} \mid \underline{\mathsf{fp}_{j,\mathfrak{N}}[e; e]}$$

Analysis

- ► FO[2] and FO[2]-like recursion
- ▶ For *j*-test-equivalent rewriting: only restrictions on \cap and -

- Rewrite \circ into \ltimes and \rtimes
- ▶ Rewrite [·]* into fp_{j,𝔅}[·; ·] (fixpoint iteration)

$$\underline{\operatorname{id}} \mid \underline{\operatorname{di}} \mid \underline{\ell} \mid \underline{\ell} \cap \mid \underline{\pi_j[e]} \mid \overline{\pi_j[e]} \mid e \circ e \mid \underline{e \cup e} \mid \underline{e \cap e} \mid \underline{e - e} \mid [e]^* \mid \underline{e \ltimes e} \mid \underline{e \ltimes e} \mid \underline{\mathfrak{N}} \mid \underline{\mathsf{fp}_{j,\mathfrak{N}}[e; e]}$$

Analysis

- ▶ FO[2] and FO[2]-like recursion
- \blacktriangleright For j-test-equivalent rewriting: only restrictions on \cap and -
- Rewriting is sound and 'complete'

- Rewrite \circ into \ltimes and \rtimes
- ▶ Rewrite [·]* into fp_{j,𝔅}[·; ·] (fixpoint iteration)

$$\underline{\operatorname{id}} \mid \underline{\operatorname{di}} \mid \underline{\ell} \mid \underline{\ell}^{\frown} \mid \underline{\pi_{j}[e]} \mid \overline{\pi_{j}[e]} \mid e \circ e \mid \underline{e \cup e} \mid \underline{e \cap e} \mid \underline{e - e} \mid [\underline{e}]^{*} \mid \underline{e \ltimes e} \mid \underline{e \rtimes e} \mid \underline{\mathfrak{N}} \mid \underline{\operatorname{fp}_{j,\mathfrak{N}}[e; e]}$$

Analysis

- ► FO[2] and FO[2]-like recursion
- ▶ For *j*-test-equivalent rewriting: only restrictions on \cap and -
- Rewriting is sound and 'complete'
- Rewriting results in a 'small' query: number of steps needed to evaluate the result is twice the length of the original query

Future Work

- Study (small extensions of) FO[2] in more detail
- Further query optimization using information on the data
- Apply similar techniques to relational databases (SQL)

Fixpoints and transitive closure (example)

The transitive closure query

 $\pi_1[[\mathsf{parentOf} \circ \overline{\pi}_1[\mathsf{researcherAt}]]^* \circ \mathsf{ownsPet}]$

Fixpoints and transitive closure (example)

The transitive closure query

 $\pi_1[[\mathsf{parentOf} \circ \overline{\pi}_1[\mathsf{researcherAt}]]^* \circ \mathsf{ownsPet}]$

is equivalent to the FO[2]-like query

 $\mathsf{fp}_{1,\mathfrak{N}}[\mathsf{parentOf} \ltimes \overline{\pi}_1[\mathsf{researcherAt}] \ltimes \mathfrak{N}; \mathsf{ownsPet}].$