

Linguistic Graph Similarity for News Sentence Searching

Kim Schouten & Flavius Frasincar

schouten@ese.eur.nl frasincar@ese.eur.nl

Web News Sentence Searching Using Linguistic Graph Similarity, Kim Schouten and Flavius Frasincar. In *Proceedings of the 12th International Baltic Conference on Databases and Information Systems (DB&IS 2016)*, pages 319-333, Springer, 2016

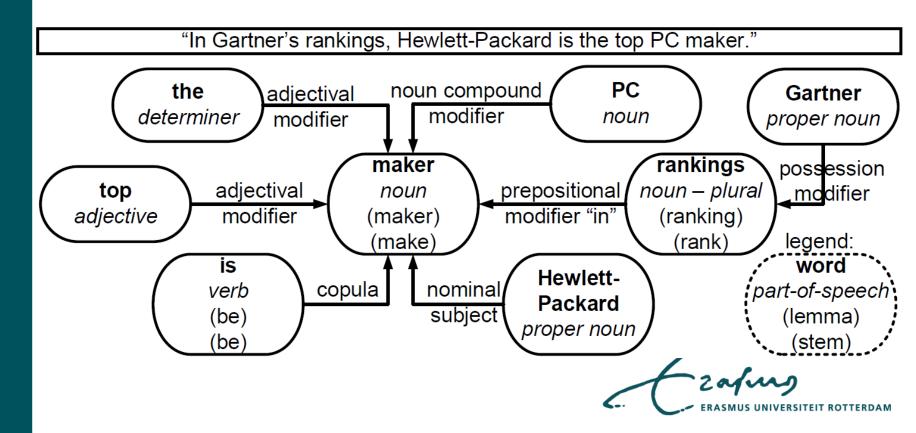
Problem

- Most text search methods are word-based
- Often, the context is lost for the sake of simplicity
- However, the meaning of a word is defined by both word and context
- How can we include context information of words into the search algorithm?
- Can we not search by sentence instead of words, and retrieve sentences with similar meaning?

Graph-based Approach

- Grammatically parsing a sentence yields a graph
 - Words are the nodes
 - Grammatical relations between words are the edges
- Set of relations of a word can then be used as context
- NLP pipeline transforms both query and news sentences into graphs

Graph representation of sentence



Graph comparison

- Problem is similar to graph isomorphism
- But partial similarity makes it much harder
 - Nodes may be missing on either side
 - Nodes may be only partially similar (pc <> workstation)
 - Relation labels may be different for similar nodes
- Hence, output is not binary but a real-valued similarity score

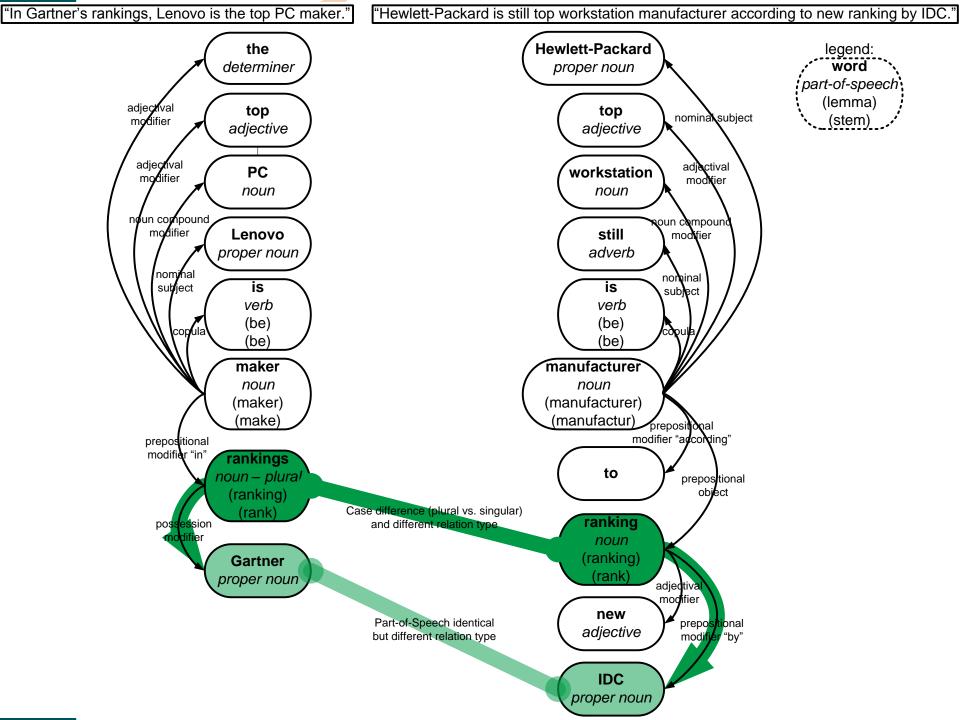
Graph comparison

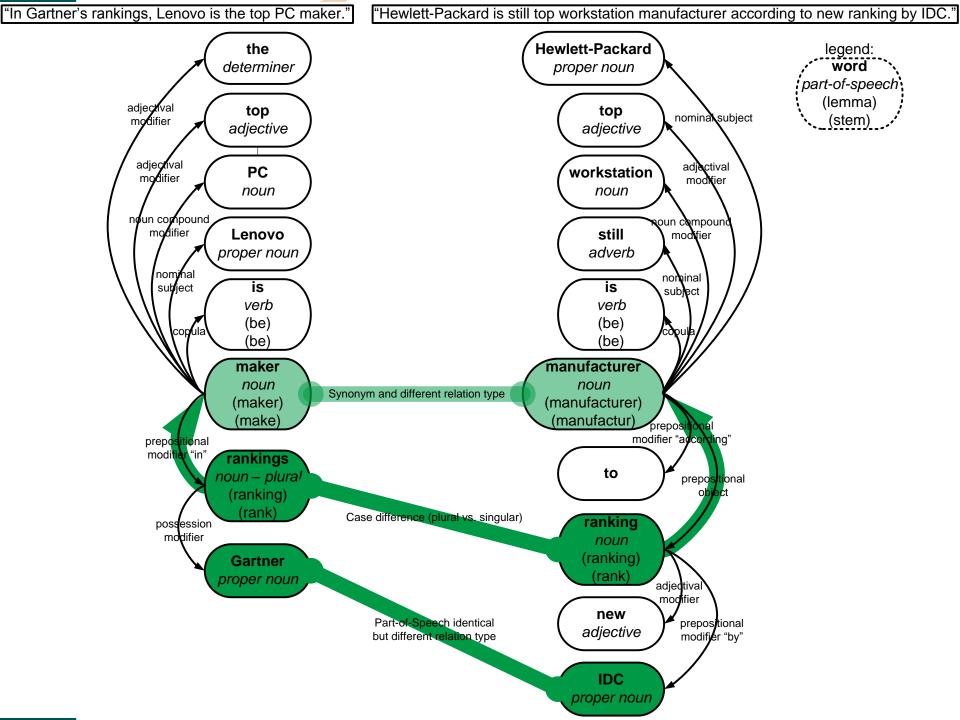
- Nodes are compared on:
 - Basic and full part-of-speech (POS) label
 - · Stem, lemma, and fully inflected word
- If POS is the same, but word is not then check for:
 - Synonymy
 - Hypernymy (1 / steps in hypernym tree)
- Correct for word frequency

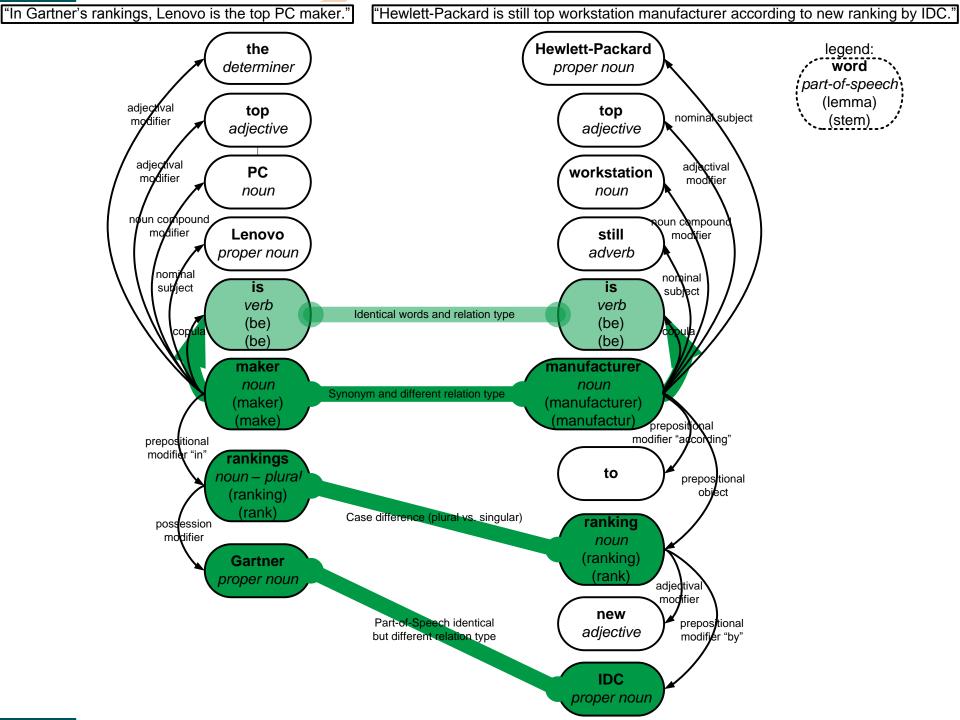
Graph comparison

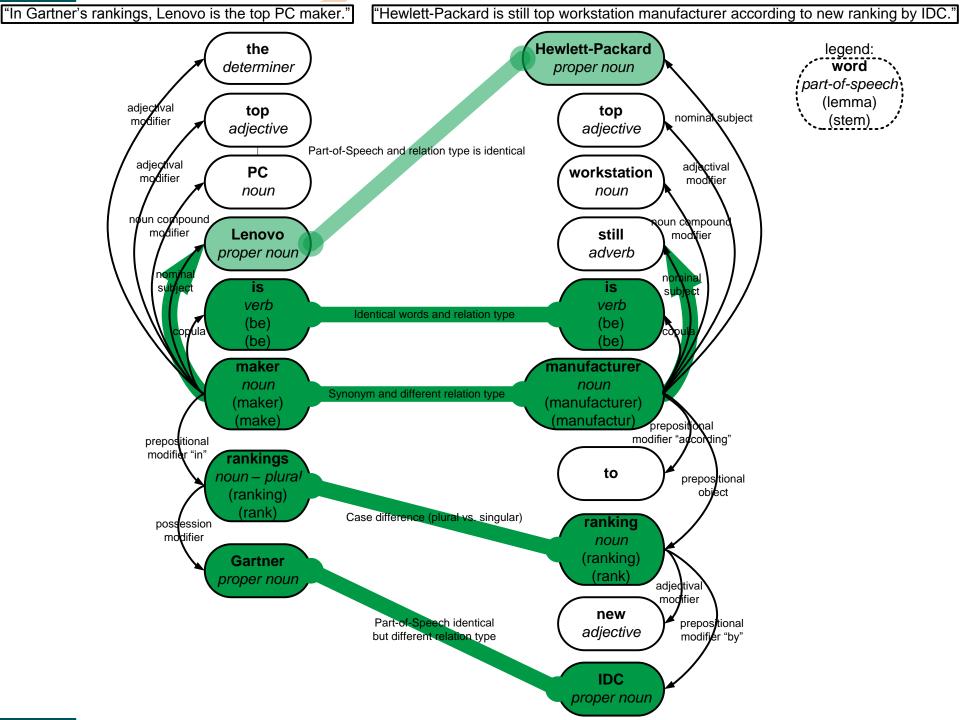
- We can recursively go through both graphs
- Compare nodes and edges to assign score
- However, a starting position within both graphs is needed:
 - Using all possibilities is inefficient
 - Always starting at root is inaccurate
 - Use index of stemmed words (nouns/verbs)
- Only the best scoring starting position is kept

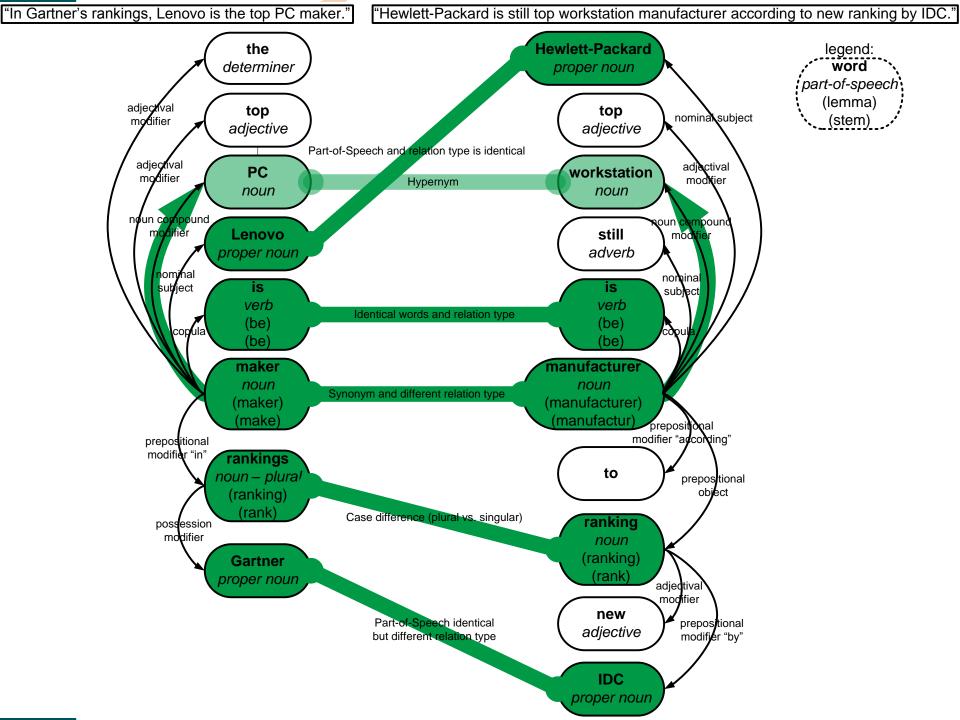


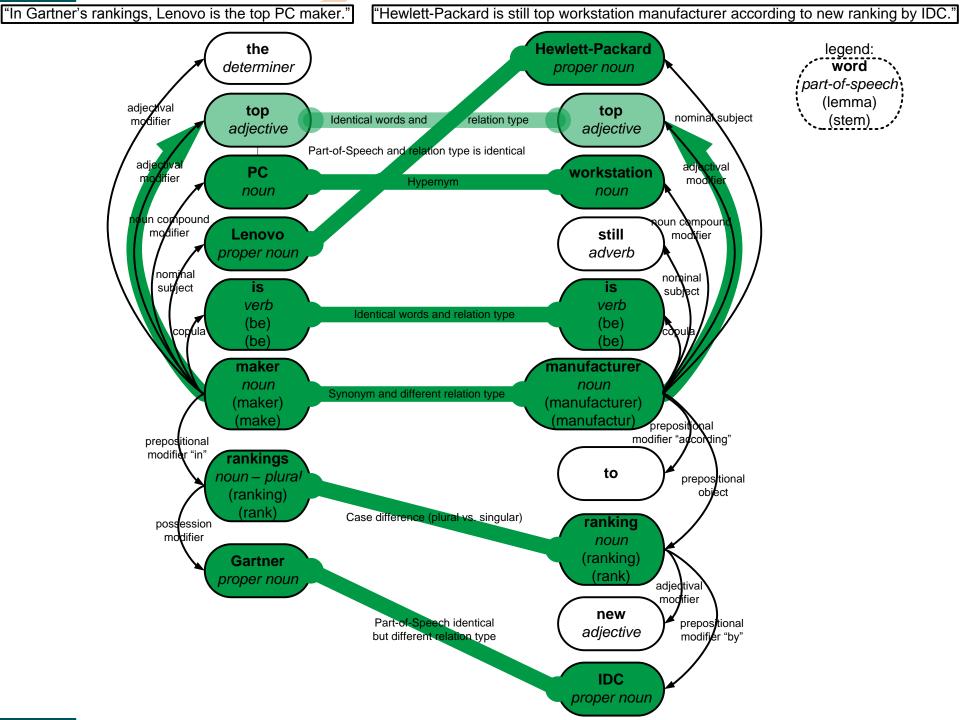












Data set

- A set of ~1000 sentences
- Extracted from news items
- News items are on roughly the same topic
- 10 sentences are designated as queries
- Three human annotators annotated the similarity between each of the queries and each of the news sentences
- Similarity score of 0,1,2, or 3
- Inter-annotator agreement: 0.1721 std.dev. in score

Score optimization

- Each comparison of two nodes or two edges contributes to total similarity score
- The exact score that each feature can yield is optimized using genetic optimization
- 5 queries and related data are used for training
- Other 5 queries and related data are used for testing
- This is repeated 32 times, with different splits
- For each query a ranked list of sentences is produced according to similarity

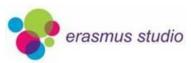
- Results are averages over all 32 splits
- t-statistics are computed over the 32 results for each metric

	TF-IDF mean score	Destiny mean score	rel. improvement	t-test p-value
nDCG		0.253	11.2%	< 0.001
MAP		0.424	12.8%	< 0.001
Sp. Rho	0.215	0.282	31.6%	< 0.001

Conclusions

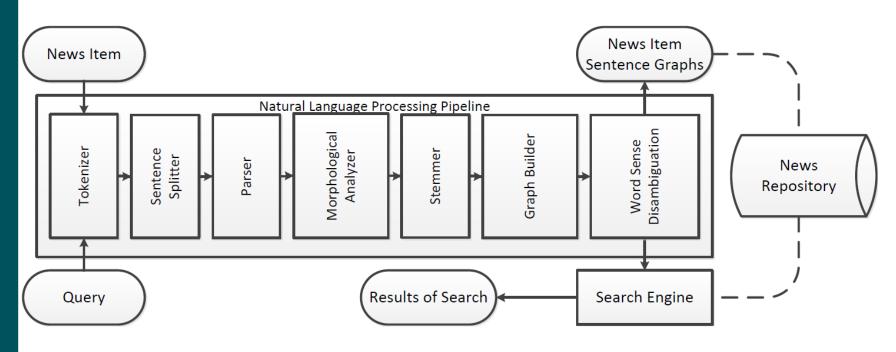
- Our proposed method has several improvements over traditional text searching:
 - By representing text as a graph, the original semantics are preserved, which can be used to leverage search results
 - Words are not only compared lexically, but also semantically, by looking for synonyms and hypernyms

Thank you for your attention!



Backup slides

Pipeline



Evaluating ranked lists

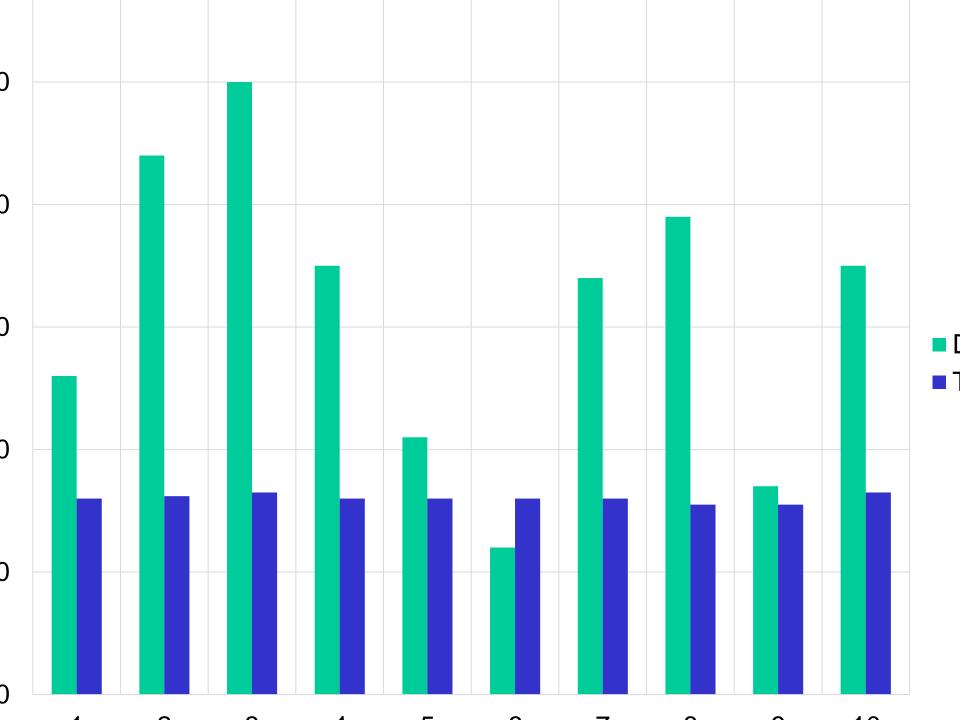
- Three metrics: MAP, Spearman's Rho, and nDCG
- MAP measures to what extent the top of the ranking contains only similar/relevant items
 - MAP assumes binary similarity
 - System outputs real-valued similarity scores
 - Converted to binary using cut-off value(s)
 - Cut-off values from 0 to 3 with stepsize 0.1
 - Reported MAP score is average of these

Evaluating ranked lists

- Spearman's Rho measures correlation of whole list
 - Only top part of results is used in practice
- nDCG measures whether the most similar items are in the top of the ranking
 - Every result contributes its similarity value to final score, discounted by position in ranking
 - Most appropriate
 - Focuses on top part of the ranking
 - Uses real-valued similarity values

Scalable?

- Linear in the number of sentences
- Graph comparison is a large 'constant' factor
- Depends on:
 - # nodes in query
 - # edges in query
 - Average # nodes in sentences
 - Average # edges in sentences



Open Issues

- More intelligent way to find start positions
- Co-reference resolution
- Non-literal expressions
- Mitigate problems with varying graph sizes
 - "Microsoft is expanding its online corporate offerings to include a full version of Office"
 - "Microsoft includes Office into its online corporate offerings"

