Landmark indexing for scalable evaluation of label-constrained reachability queries

Lucien Valstar, George Fletcher, and Yuichi Yoshida

Dutch Belgian Database Day 2016 Mons, Belgium October 28, 2016

Introduction & problem statement

Introduction

- Web and many other contemporary applications are generating huge amounts of graph data. Many of these are edge-labelled.
- Examples:
 - RDF, semantic web
 - knowledge graphs
 - social networks,
 - road networks
 - biological networks

Example: social network

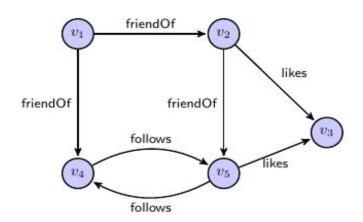


Figure 1: An example of a directed graph with |V| = 5 vertices, |E| = 7 edges, and edge labels $\mathcal{L} = \{\text{likes, follows, friendOf}\}.$

- LCR-query: can v₁ reach v₃ using only edges of the label { friendOf }?
 - No, hence query (v₁,v₃,{ friendOf }) is false.
- Can v₁ reach v₃ using only edges of the labels { friendOf, likes }?
 - Yes, hence the query
 (v₁,v₃,{ friendOf, likes }) is true.

Solutions

Breadth-first search

- Given a query (v,w,L) we wish to find out whether the query is a true- or a false-query.
- BFS explores the graph looking for w using only edges with a label $l \in L$.
- It has the 'maximum' query answering time, but the 'minimum' index construction time and index size.

Landmarked-index (LI): our basic idea

- Building a full index, i.e. for all vertices, takes too much time and memory, but can answer all queries immediately.
- Hence we build an index for a subset of the vertices $k \le n$ (called landmarks) of vertices: $v_1, ..., v_k$, where n is the number of nodes.
- Build an index for each $v_1, ..., v_k$.
- Use BFS as baseline and use v_1 , ... v_k to speed up the query answering.

Landmarked-index (LI+): extensions

For large graphs we get that the ratio k/n gets lower. Because we use BFS as a baseline, we may experience two issues.

- 1) Reaching the landmarks may take a long time, hence we store some (say b) label sets connecting non-landmarks with landmarks.
- 2) False queries are still slow with LI-approach. For each landmark v and a label set L^* we store a subset of the vertices $V^* \subseteq V$ s.t. for all v^* in V^* we have that (v,v^*,L^*) is a true-query. This is used for pruning.

Experimental results

A few real datasets

Dataset	IVI	<i>E</i>	<i>L</i>	k	b
soc-sign-epinions	131k	840k	8	1318	15
webGoogle	875k	5.1M	8	1751	15
zhishihudong	2.4M	18.8M	8	4905	15
wikiLinks (fr)	3M	102.3M	8	1738	20

- Used server with 258GB of memory and a 32-core
 2.9Ghz processor
- Set a 6-hour time limit and a 128GB memory limit
- Method under study: LI+
- Single-threaded

- 3,000 true-queries
- 3,000 false-queries

Results on these graphs

- Index size (MB) and construction time
- Speed-up over BFS

Dataset	IS (MB)	IT (s)	True, <i>L</i> /4	False, <i>L</i> /4	True, <i>L</i> -2	False, <i>L</i> -2
soc-sign-epinions	1,159	114	1,733	1,894	4,213	2,958
webGoogle	27,117	4,691	4,181	5,908	4,385	20
zhishihudong	16,199	6,419	803	911	954	20
wikiLinks	98,125	24,873	10,200	9321	13,082	8036

Additional results

- Similar results have been obtained on 23 real datasets
- And on dozens of synthetic datasets where we varied:
 - graph size (5k up until 3.125M vertices)
 - label set distribution (exponential, normal, uniform)
 - label set size (from 8 to 16)
 - growth model (Erdos-Renyi, Preferential Attachment)
- Other query related types (e.g. distance queries) were studied

Conclusion

Conclusion

- Landmarked-Index is scalable w.r.t. the graph size.
- Landmarked-Index leads to multiple orders of magnitude speed-ups,
 although there is some asymmetry still between true- and false-queries.
- Future work:
 - Landmarked-Index could be a groundwork for other types of queries (distance queries, finding a witness, defining a budget per label, RPQ).
 - maintainability of the index.

Related work

- Zou et al. "Efficient processing of label-constraint reachability queries in large graphs." is about LCR.
- Bonchi et al. "Distance oracles in edge-labeled graphs." is about LCR+distance.

For more on the LI-algorithm:
 https://www.youtube.com/watch?v=QKLtpoLdXfk