Mark Raasveldt, Hannes Muhleisen

Don’t Hold My Data Hostage

A Case For Client Protocol Redesign



W What is a Client Protocol anyway?

» Every database that supports remote clients has a
client protocol

» Using this protocol, clients can query the database
» In response to a query, the server computes a result

» Then the result is transferred back to the client



W What is a Client Protocol anyway?

Time

Query Result Set
Execution Serialization

-
|

7.

Result Set
Deserialization

Server

Authentication
Result Header

Client



W Motivation

» Traditionally, client protocols were mainly used for
printing output to a console

» Console clients (psqgl, mclient)

» Currently, many clients actually want to use and
analyze the data

» External analysis tools (R/Python)

» Visualisation tools (Tableau)



W Motivation

» Problem: Current protocols were designed for
exporting small amount of rows

» OLTP use cases
» Exporting aggregations

» Exporting large amounts of data using these
protocols is slow



& Motivation

Netcat (0.23s)

MySQL - Operation
B Connection
MySQL+C - : _ | Printing
B Query Execution
MongoDB | W 98 MRSS + Transfer
PostgreSQL | WL 114
DBMS X 1 W 12
DBz W 129
MonetDB - 13.9
Hive - 24.6
0 10 20
Wall clock time (s)

» Cost of exporting 1M rows of the lineitem table from
TPC-H (120MB in CSV format) on localhost



W Motivation

» We are not the first ones to notice this problem
» A lot of work on in-database processing, UDFs, etc.

» However, that work is database-specific and requires
adapting of existing work flows

» This work: Why is exporting large amounts of data
from a database so inefficient?

» Can we make it more efficient?



W Cost of Data Export

» We don't care about printing and connection costs

» What about result set (de)serialization + transfer?

System Time (s) Size (MB)
(Netcat) (0.23) (120.0)
MySQL 2.04 127.0
DBMS X 2.82 127.1
MonetDB 3.53 150.2
DB2 3.53 154.6
PostgreSQL 3.74 195.4
MongoDB 3.88 365.8
MySQL+C 6.95 48.2
Hive 7.19 148.5




W Cost of Data Export

» Result Set Serialisation

» Compression, data conversions, endianness swaps,
copying data into a buffer

» Data Transfer Time
» Result Set Deserialization

» (De)compression, data parsing, endianness swaps



W State of the Art Protocols

» Why do these protocols exhibit this behaviour?

» Let’s take a look at this simple table serialised using
different databases’ result set serialisation formats.

INT32 | VARCHAR10
42 | DPFKG
100,000,000 | OK
Table 1: Simple result set table.




W State of the Art Protocols

%3 N - = — — = N @\

i2 ? 2 FE 0 ozz EE 23

b, D, D) D) <D, o

=2 5 5SS 8z afe Efs af

44 1710002 04000010BC 054450464B47
44 14,0002 0405F5E100 024F 4B

» PostgreSQL serialisation of the previous table




W Protocol Implementation

» We implemented our own protocol
» In MonetDB
» In PostgreSQL

» Without per-row overhead

» With efficient compression techniques



W Benchmark Results

Slow -

Time Taken

o -

Our Protocol Their Protocol



W Conclusion

» Current protocols are not suited for large result set
export

» This leads to large result set export being a bottleneck

» We show there is room for improvement by

implementing our own protocol that is an order of
magnitude faster



