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Don’t Hold My Data Hostage

A Case For Client Protocol Redesign



W What is a Client Protocol anyway?

» Every database that supports remote clients has a
client protocol

» Using this protocol, clients can query the database
» In response to a query, the server computes a result

» Then the result is transferred back to the client
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W Motivation

» Traditionally, client protocols were mainly used for
printing output to a console

» Console clients (psqgl, mclient)

» Currently, many clients actually want to use and
analyze the data

» External analysis tools (R/Python)

» Visualisation tools (Tableau)



W Motivation

» Problem: Current protocols were designed for
exporting small amount of rows

» OLTP use cases
» Exporting aggregations

» Exporting large amounts of data using these
protocols is slow
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» Cost of exporting 1M rows of the lineitem table from
TPC-H (120MB in CSV format) on localhost



W Motivation

» We are not the first ones to notice this problem
» A lot of work on in-database processing, UDFs, etc.

» However, that work is database-specific and requires
adapting of existing work flows

» This work: Why is exporting large amounts of data
from a database so inefficient?

» Can we make it more efficient?



W Cost of Data Export

» We don't care about printing and connection costs

» What about result set (de)serialization + transfer?

System Time (s) Size (MB)
(Netcat) (0.23) (120.0)
MySQL 2.04 127.0
DBMS X 2.82 127.1
MonetDB 3.53 150.2
DB2 3.53 154.6
PostgreSQL 3.74 195.4
MongoDB 3.88 365.8
MySQL+C 6.95 48.2
Hive 7.19 148.5




W Cost of Data Export

» Result Set Serialisation

» Compression, data conversions, endianness swaps,
copying data into a buffer

» Data Transfer Time
» Result Set Deserialization

» (De)compression, data parsing, endianness swaps



W State of the Art Protocols

» Why do these protocols exhibit this behaviour?

» Let’s take a look at this simple table serialised using
different databases’ result set serialisation formats.

INT32 | VARCHAR10
42 | DPFKG
100,000,000 | OK
Table 1: Simple result set table.




W State of the Art Protocols
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» PostgreSQL serialisation of the previous table




W Protocol Implementation

» We implemented our own protocol
» In MonetDB
» In PostgreSQL

» Without per-row overhead

» With efficient compression techniques



W Benchmark Results
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W Conclusion

» Current protocols are not suited for large result set
export

» This leads to large result set export being a bottleneck

» We show there is room for improvement by

implementing our own protocol that is an order of
magnitude faster



