
Optimization of
Regular Path Queries

in Large Graphs

Nikolay Yakovets

in collaboration with:
Parke Godfrey and Jarek Gryz

Optimization of RPQs

2

Scalable & efficient
evaluation of regular

path queries

Linked Data

RPQs

Semantics

Evaluation

WAVEGUIDE

Implementation

Optimization
Plans

Costs

Graph Query Languages

Adjacency Query
list all neighbours, find k-
neighbourhood of a node

Pattern Matching Query
find all sub-graphs in a database that are
isomorphic to a given query pattern graph

Summarization Query
summarize or operate on query results
e.g. aggregation; avg(), min(), max(), etc

Reachability/Path Query
navigational query
deals with paths in a graph
test whether nodes are reachable in a graph
paths of fixed or arbitrary lengths

?

?
pattern

G

? ?
??

?

+ +

3

SPARQL - Query Language

SPARQL Protocol and RDF Query Language (SPARQL)
‣ declarative, based on pattern matching
‣ graph patterns describe subgraphs of the queried RDF graphs
‣ those subgraphs that match a description yield a result

Query: Graph:

SELECT ?pop
WHERE
{
 :Oakville :population ?pop
}

variables

graph pattern

ny:nikolay

dbpedia:Oakville

"182520"

foaf:based_near

dp:population "Nikolay
Yakovets"

foaf:name

?pop

adjacency pattern matching summarization

4

SPARQL Property Paths

‣ Part of SPARQL 1.1 W3C recommendation
‣ Allow regular expressions to describe paths between nodes:

 disjunction concatenationp1/p2p1|p2

 zero or onep? invertedp̂

 negated!iri

 Kleene starp⇤ one or morep+

path

‣ Useful in many application domains: social networks, biological, encyclopedic
‣ Convenient declarative mechanism to answer queries without prior knowledge of

underlying data paths

5

SPARQL Property Paths

en:Gundam

jp:ガンダム

:sameAs

:isLocatedIn

jp:お台場

en:Daiba

en:Tokyo en:Japan

jp:東京 jp:関東地⽅方 jp:本州 jp:⽇日本

select ?place
{ en:Gundam (:sameAs*/:isLocatedIn)+/sameAs* ?place .}

‣ Example: DBPedia snippet, part of a LOD dataset
‣ Two datasets English and Japanese interlinked with OWL terms

‣Query: Where is Gundam statue located?
‣ Solution: Need to resolve equivalent data entities (:sameAs) and traverse spacial

hierarchy (:isLocatedIn) to fully utilize richer spacial information in Japanese dataset

Q:

G:
:isLocatedIn

:isLocatedIn

:sameAs

6

Formal Evaluation

Q = (x, L(r), y)

free variables

regular language

‣ Property Paths in SPARQL are essentially Regular Path Queries (RPQs)
‣ RPQs have been well-studied before the advent of RDF and SPARQL

‣ Formal def.:

‣ Semantics of Evaluation:

[[Q]]G - an evaluation of Q over graph database G

a collection (s, t) such that

9 a path p in G between s and t
such that p conforms to regex r

a bag (allow duplicates)
aka. solution counting 8
a set (discard duplicates)
aka. existential semantics 9

path-induced string �(p) 2 L(r)
path is simple or arbitrary

7

Paths in SPARQL

Evaluation of simple paths is
NP-complete on general
graphs (Mendelzon et al., 1987)

Tractable on DAGs, or restricted
compatible regex

SPARQL (W3C proposal for
RDF query language)

support of RPQs through
SPARQL1.1 property paths

simple8 9simple regular 8
Counting procedures are #P-
complete on general graphs
(Arenas et al., Losemann et al., 2013)

Tractable on DAGs, or restricted
compatible regex

regular 9

8

RPQ Evaluation

[[Q]]G - an evaluation of Q over graph database G
+

considering existential semantics on regular paths

FA-based
Use finite state machines in
evaluation
Mendelzon et al., 1987

𝝰-RA-based
Use relational algebra
extended with alpha-
operator which computes
transitive closure
Losemann et al., 2013

9

10

FA-based Evaluation
select ?place
{ en:Gundam (:sameAs*/:isLocatedIn)+/sameAs* ?place .}Q:

1. From a parse tree, construct a
query ε-NFA:

2. Minimize the query automaton,
if necessary :

3. Construct a product P of
query and graph automata.

4. Check P for reachable accepting
states to produce an answer to a query

11

𝝰-RA-based Evaluation
select ?place
{ en:Gundam (:sameAs*/:isLocatedIn)+/sameAs* ?place .}Q:

1. From a parse tree, construct an RA tree:

Have SPRJU-RA extended with 𝝰
𝝰 computes the least-fixpoint:
𝝰 computes the transitive closure of a given relation

Q parse tree Q RA tree favourite RDBMS

Comparing Approaches

FA 𝝰-RA

plan spacesTh: FA and are 𝝰-RA incomparable

Pf.:
translation into Datalog
examine induced sequence of joins

PFA PaRA

e.g. (?x, (a/b)+, ?y)
PFA =((((a⋈b)⋈a)⋈b)⋈a)..
PaRA =(a⋈b)⋈(a⋈b)⋈(a⋈b)..

PaRA ∉ FA PFA ∉ 𝝰-RA

FA ⊈ 𝝰-RA𝝰-RA ⊈FA

12

WAVEGUIDE

Search driven by a waveplan which guides a number of
wavefronts which iteratively explore the graph

waveplan guided iterative
graph search

13

UU
·b·b a·a·

Wab:Wab:

UU

Wab·Wab·
Wab+:Wab+:

Wab·Wab·

Pab+Pab+

W

W

W

Goal: Need to consider both FA and 𝝰-RA plan spaces

search wavefronts

a wavefront
• an expanding search unit
• guided by a wavefront automaton
• labeled with regex it evaluates
• seeded with

Wl = (l, S, q0, Q, �, E, L, F)Wl = (l, S, q0, Q, �, E, L, F)

label

seed

starting state
set of states

edge labels

transition function

wavefront labels
accepting states

a transition function
• appending and prepending transitions
• transitions over graphs and views

�

S

Wl

� : Q⇥ ((E [L)⇥ {· , ·} [{"}) ! 2Q� : Q⇥ ((E [L)⇥ {· , ·} [{"}) ! 2Q

graph edges
or wavefront labels

appending or prepending

pipeline

a seed
• edge incoming into accepting state in
• defined with an RPQ, a wavefront or

by construction
• can be universal, any node in a graph

S
Wl

q0q0 WlWl

SS

starting state

seed
14

a waveplan

a waveplan
• produces an answer to a given query
• an ordered set of wavefront automata
• order defines which labels can be used in the seed and

transitions over a view
• higher wavefronts can use lower wavefronts as their

labels and seeds, but not vice-versa
• query answered by the highest wavefront

PQ
Q

e.g., query (?x, (a/b)+, ?y)
• produces an answer for (a/b) regex
• uses as a view to compute

(a/b)+

15

UU
·b·b a·a·

Wab:Wab:

UU

Wab·Wab·
Wab+:Wab+:

Wab·Wab·

Pab+Pab+

<Pab+<Pab+

set of wavefronts ordering

Wab
Wab+ Wab

WAVEGUIDE - iterative search

Exploration procedure based on semi-
naive evaluation
Intermediate search results kept in the
search cache
cache keeps track of end-nodes and
corresponding states in a plan

• seed specifies node pairs to start from
loop while discover new tuples
• crank advances simultaneously in a graph and automaton
• reduce prunes the delta, handles unbounded computation
• cache materializes according to the specified strategy
• extract produces answers

16

challenges!

17

plan space
size?

optimizations

enumerator

vs. other
techniques?

efficient? optimal?

enabled by
WAVEGUIDE?

cost model

analysis?

18

WAVEGUIDE Plan Space
• subsumes both FA and 𝝰-RA
• adds exclusive new plans

• e.g., (?x, (a/b/c)+, ?y)

FA 𝝰-RA

WP

𝝰-RA ∪ FA ⊂ WP

19

WAVEGUIDE Plan Space

• e.g., (?x, (a/b/c)+, ?y)

aa
startstart

bb

aa

cc

• subsumes both FA and 𝝰-RA
• adds exclusive new plans

𝝰-RA ∪ FA ⊂ WP FA 𝝰-RA

WP

P(abc)+P(abc)+

UU
b·b·a·a·W(abc)+:W(abc)+:

<P(abc)+
<P(abc)+

c·c·

a·a·

20

WAVEGUIDE Plan Space

• e.g., (?x, (a/b/c)+, ?y)

TT TT

�p=a�p=a �p=b�p=b

TT

./
o=s

./
o=s

�p=c�p=c

./
o=s

./
o=s

↵↵

P(abc)+P(abc)+

UU
b·b·a·a·Wabc:Wabc:

<P(abc)+
<P(abc)+

c·c·

UU
W(abc)+:W(abc)+: Wabc·Wabc·

Wabc·Wabc·

• subsumes both FA and 𝝰-RA
• adds exclusive new plans

𝝰-RA ∪ FA ⊂ WP FA 𝝰-RA

WP

21

WAVEGUIDE Plan Space

• e.g., (?x, (a/b/c)+, ?y)

• subsumes both FA and 𝝰-RA
• adds exclusive new plans

𝝰-RA ∪ FA ⊂ WP FA 𝝰-RA

WP

P(abc)+P(abc)+

UU
·b·bWbc:Wbc:

<P(abc)+
<P(abc)+

c·c·

UU
W(abc)+:W(abc)+: a·a·

a·a·

Wbc·Wbc·

22

• enumeration algorithm to walk the
sub-space of standard plans

• bottom-up DP
• polynomial in the size of the query
• generates legal plans
• guarantees optimal substructure wrt.

the cost model

enumerator
rule

id description
waveplan precondition

s1s1 s2s2 opop

seedseed

p :p :CC concat
compound

|s1| > 1|s1| > 1 |s2| > 1|s2| > 1 null

d1d1 p1p1
d2 = Ud2 = U

p :p :CCF concat
compound

flip d2d2 p2p2

|s1| > 1|s1| > 1 |s2| > 1|s2| > 1 null

p :p :CP concat
pipe

|s2| = 1|s2| = 1 null

d1d1 p1p1

p :p :CPF concat
pipe flip

d2d2 p2p2

|s1| = 1|s1| = 1 |s2| > 0|s2| > 0 null

//

//

//

s1s1

s2s2

s1s1

s2s2

//Ws2 ·Ws2 ·

·Ws1·Ws1

s2·s2· |s1| > 0|s1| > 0

d1 = Ud1 = U

·s1·s1

DP direct
pipeline

p2p2

"" d2 = s1d2 = s1

d1d1 p1p1

p :p :
s1s1 s2s2

DP inverse
pipeline

p1p1

""
d1 = s2d1 = s2

d2d2 p2p2

p :p :
s2s2 s1s1

//

//

null

null

|s1| > 0|s1| > 0

|s2| > 0|s2| > 0

rule
id description

waveplan precondition
s1s1 s2s2 opop

seedseed

ASDP absorb seed
direct pipe d

s1·s1·p :p : |s1| = 1|s1| = 1 null null

ASIP absorb seed
inverse pipe d

·s2·s2p :p : |s2| = 1|s2| = 1null null

dd

dd

ASDC absorb seed
direct compound d

Ws1 ·Ws1 ·p :p : |s1| > 1|s1| > 1 null null

ASIC absorb seed
inverse compound d

·Ws2·Ws2p :p : |s2| > 1|s2| > 1null null

dd

dd

seed passing

d1 = Ud1 = U

d2 = Ud2 = U

rule
id description

waveplan precondition
s1s1 s2s2 opop

seedseed

KP kleene plus
p1p1

""

p :p :

d

d1 = d/(s1)+d1 = d/(s1)+ + nulls1s1 d1 = (s1)+/dd1 = (s1)+/d
null

KS kleene star
p1p1

""

p :p :

d

d1 = d/(s1)⇤d1 = d/(s1)⇤ * nulls1s1 d1 = (s1)⇤/dd1 = (s1)⇤/d
null

"" ""

"" ""

""

PSWP

PWPPWP

PFAPFA
P↵-RAP↵-RAPTFAPTFA

PSWPPSWP

23

High-level Cost Model

Costs of crank-reduce-cache operations

• Total number of edge walks during
the search

• Roughly the sum of sizes of all
deltas (search space)

Ccrank
• Duplicate removal within a delta

(search space)
• Duplicate removal against the

cache (materialized cache size)

Creduce

• Cache maintenance (indexing, etc.)

Ccache+ +

24

Cost Factors

Search cardinality
• Number of wavefronts, starting points,

directions
• similar to join ordering in relational databases
• use graph statistics such as joint label

frequencies - synopsis

Solution redundancy
• due to existential semantics of RPQ evaluation
• need only one solution per satisfying node pair
• nodes re-discovered by following different

conforming paths
• nodes rediscovered by following cycles
• different redundancy for different plans!

Sub-path redundancy
• common in dense graphs with

hierarchical structures
• answer pairs may share significant sub-

paths
• efficient to evaluate separately

25

WAVEGUIDE Optimization Methods

Choice of wavefronts
• starting points,

directions with direct/
inverse and graph/
view transitions

Reduce
• counter duplicates both re-

discovered and cyclic
• first-path pruning (FPP)

Threading
• seeded sub-automata
• use results via named sets

(views)

Partial materialization
• often materialization not

necessary
• identify pipelining cases

Loop caching
• pre-computing parts of the

automata within a loop

26

Implementation

Waveguide in the context of
SPARQL
• case study of SPARQL property

path query optimization on
large RDF datasets

Guided search as procedural SQL
• implemented in PostgreSQL

Illustration
• query plan designer
• runtime visualizer
• profiler

27

Performance

Various domains
• social (LDBC social network intelligence benchmark)
• life sciences (UNIPROT)
• encyclopedic (Yago2s, DBPedia)

Queries
• mining for specified RPQ pattern templates
• a set of realistic queries

28

Plan Performance
Example query on Yago2s dataset:

Sample waveplans:

Observations
• can achieve orders of magnitude

improvement even for simple
queries

• different redundancy pruning
profiles depending on tape

• want to constrain delta sizes over
iterations

29

Threading Performance

DBPedia dataset
Different threading points and different labels
Where to thread?

hierarchy vs. length of potential shared path
Can be harmful if threading chosen poorly
Need to cost

30

Loop-caching Performance
DBPedia dataset: mining 21 queries of type ?x (a/b) ?y
evaluating pipelined and full loop caching: is rich WG plan space useful?
need to cost, as the type of edge walks performed is different depending on a plan and
shape of the graph

31

vs. others

mining RPQ patterns and set of realistic queries over YAGO2s and
DBPedia
benchmarking:
• transitive closure
• query planning
despite slower transitive closure, WG gains significant improvement
due to richer plan space

32

Devise WAVEGUIDE (WG) framework for planning and evaluation
of RPQs (SPARQL property paths)
Demonstrate that it subsumes existing techniques and extends well
beyond them
Analyze WG’s plan space and provide an efficient way to
enumerate through subspace of plans
Model the cost factors that determine the efficiency of the plans
Present and prototype powerful optimizations offered by WG plans

WAVEGUIDE

33

Multiple and Conjunctive RPQs
• extend from single-path property-path queries (RPQs)
• how to utilize common subexpressions to find global optimal

plans?
Richer Enumerator
• go beyond Thompson-like construction of waveplans
• explore k-unrolling for Kleene expressions
• other automata minimization/construction techniques
Better Cardinality Estimation
• overcome uniformity assumption with extended synopsis with

binning
• estimate correlations across joins to overcome independence

assumption

WAVEGUIDEBEYOND

richer plan space

• have efficient enumeration for a subspace of standard waveplans

can we do better?
• analyze if using:

• k-unrolling - to (partially) unroll Kleene expressions
• Glushkov automata
• Derivative automata

34

PWPPWP

PFAPFA
P↵-RAP↵-RAPTFAPTFA

PSWPPSWP

P
Unroll

P
Unroll

PWPPWP

PFAPFA
P↵-RAP↵-RAPTFAPTFA

PSWPPSWP

PGluPGlu

PWPPWP

PFAPFA
P↵-RAP↵-RAPTFAPTFA

PSWPPSWP

PDerivativePDerivative

PSWP

Thank You!

35

