

Author: Xuming Meng

Supervisor: dr. G.H.L. FLETCHER

15-08-2016

Introduction & Problem Statement

Regular Path Query (RPQ) in PGX.

- an in-memory parallel graph analytics framework, developed by Oracle Lab.
- Space requirement
- Performance requirement
- Commitment to deliver result

Introduction & Problem Statement

RPQ: (X, knowsolike+o(like*odislike)+, Y)

Three types of clauses:

- Non-Kleene star clause, i.e. knows
- Non-nested Kleene star clause, i.e. like+
- Nested Kleene star clause, i.e. (like* o dislike)*

Algorithm & possible optimizations:

- Naive: search in the graph by standard algorithms, such as BFS or DFS
- Cache: speed-up with materialization (space/speed trade-off)
- Context-specific: specialized in-memory search

Existing Approaches

Index-based

- k-path index (Fletcher et al. 2016)
- Reachability index (Gubichev et al. 2013)

Automata-based

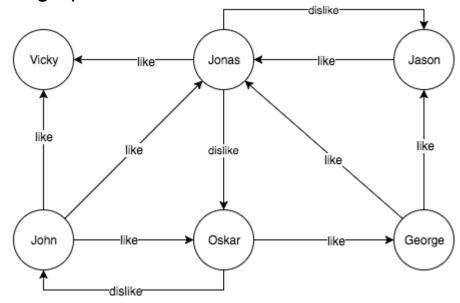
Automata-based approach (Koschmieder et al. 2012)

Datalog-based

Datalog-based relational database (Saumen C. Dey et al. 2013)

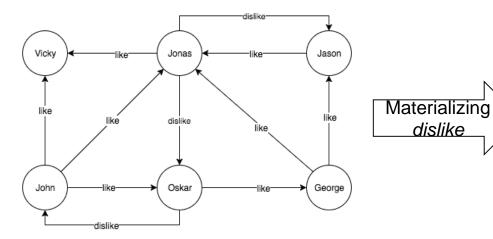
Transitive Closure-based

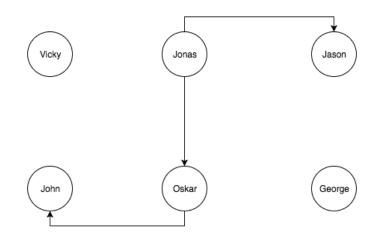
• Full Transitive Closure (Rakesh Agrawal 1988)


General Drawbacks

- Large potential intermediate results
- Impractical precomputation cost

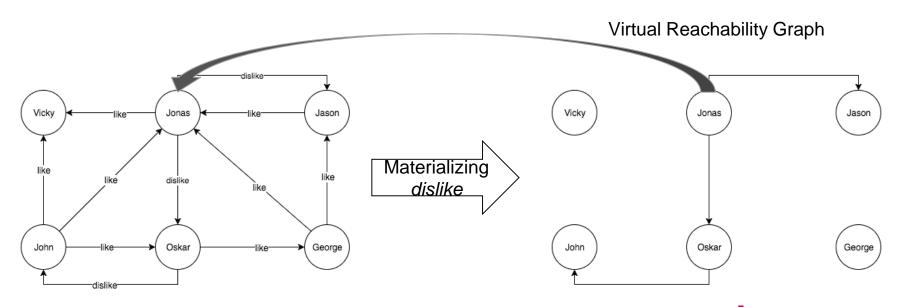
RPQ Operator Design


How to **adapt** transitive closure algorithms to solve *non-nested Kleene star clause* on labeled digraphs?



RPQ Operator Design

RPQ: (X, dislike+, Y)

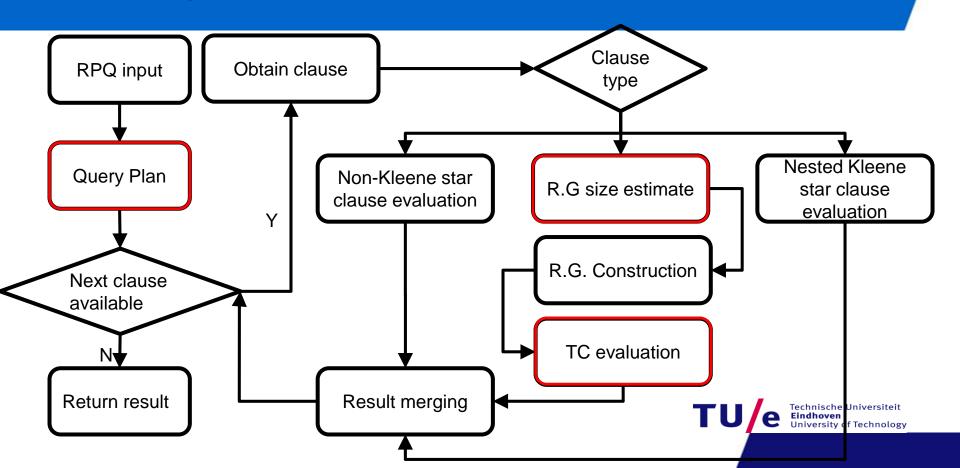

Reachability Graph (R.G.)

RPQ Operator Design

Question: what if there is not enough memory for R.G.?

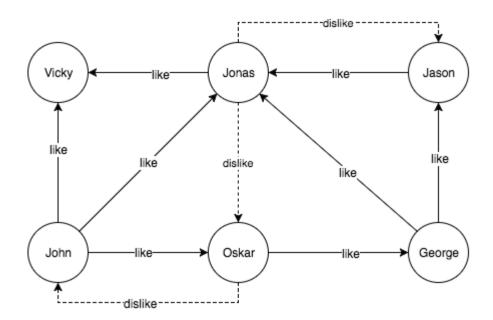
Size Estimation Overview

Non-Kleene


- Capturing correlations between labels in paths is critical to a precise estimate
- We adopt the method in (Ashraf Aboulnaga et al. 2001) that captures certain degree of co-relationship between edge labels in paths

Kleene star

- Need estimates for transitive closures, E.g. like+
- Traditional methods produce poor estimates due to lack of *deduction*
- We use min-hash sketch (*Edith Cohen, 1997*) for estimation


RPQ Life Cycle

RPQ Operator Implementation

Depending on whether the R.G. has small-world property

- Bitmap-based BFS (M. Yang and C. Zaniolo, 2014)
- Multi-source BFS (M. Then et al., 2014)

Experiments & Result analysis

Objectives

- Effectiveness of materializing reachability graph.
- Performance impact of reachability graph construction.
- Performance impact of reachability graph type and algorithm choice

	LDBC	LUBM
Num. of Vertex	7,352,398	21,715,109
Num. of Edge	7,689,947	66,199,001
Num. of Person	11,000	-
Num. of Uni.	-	1,000

TABLE 6.4: Characteristics of Test Data Set

NOTICE:

Experiments & Result analysis

Query ID	BFSb (ms)	BFSbRG (ms)	RGCons (ms)	$Speedup_1$	$Speedup_2$
1	238,380	2,428	2,773	89x	45x
2	275,000	497	830	553x	207x
3	843,000	1,727	382	488x	399x
4	717,700	1,054	331	680x	518x
5	232,766	198	281	1175x	492x
6	> 11 hours	408,166	2,619	-	-
7	232,449	206	265	1128x	493x
8	241,440	227	456	1063x	353x

TABLE 6.5: LDBC-SNB: Ratios between the performance of bitmap-based BFS with and without reachability graph (i.e. BFSbRG, BFSb respectively). Reachability graph construction time (RGCons) is not included in Speedup₁ but included in Speedup₂.

Experiments & Result analysis

Query ID	BFSbRG (ms)	MSBFSRG (ms)	RGCons (ms)	$Share_1$	$Share_2$
1	2,428	4,138,652	2,773	53.31%	≈ 0%
2	497	241	830	62.54%	77.49%
3	1,727	289	382	18.11%	56.92%
4	1,054	277	331	23.90%	54.44%
5	198	203	281	58.66%	58.07%
6	408,166	21,336	2,619	0.63%	10.93%
7	206	208	265	56.26%	56.02%
8	227	274	456	66.76%	62.46%

TABLE 6.6: LDBC-SNB: Share of reachability graph construction in total query processing. Share₁ indicates the graph construction share in bitmap-based BFS solution. Share₂ indicates the graph construction share in MS-BFS solution.

Conclusion & Future work

Achievement

- Boosting RPQ evaluation using partial materialization
- Switching physical TC operator depending on graph type
- Trading performance for space if necessary

Possible Improvement

- A better query estimation method
- An efficient in-memory RPQ evaluation solution without R.G.
- Facilitating graph traversal with effective cache usage

Thank You

