
Efficient Regular Path Query 

Evaluation in PGX 
Author: 

Xuming Meng
Supervisor: 

dr. G.H.L. FLETCHER

15-08-2016



Introduction & Problem Statement

Regular Path Query (RPQ) in PGX.

- an in-memory parallel graph analytics framework, developed by Oracle Lab.

● Space requirement

● Performance requirement

● Commitment to deliver result



Introduction & Problem Statement

RPQ: (X, knows∘like+∘(like*∘dislike)+, Y)

Three types of clauses:

● Non-Kleene star clause, i.e. knows

● Non-nested Kleene star clause, i.e. like+

● Nested Kleene star clause, i.e. (like*∘ dislike)+

Algorithm & possible optimizations:

- Naive: search in the graph by standard algorithms, such as BFS or DFS

- Cache: speed-up with materialization (space/speed trade-off)

- Context-specific: specialized in-memory search



Existing Approaches

Index-based

● k-path index (Fletcher et al. 2016)

● Reachability index (Gubichev et al. 2013)

Automata-based

● Automata-based approach (Koschmieder et al. 2012)

Datalog-based

● Datalog-based relational database (Saumen C. Dey et al. 2013)

Transitive Closure-based

● Full Transitive Closure (Rakesh Agrawal 1988)

General Drawbacks

- Large potential intermediate results

- Impractical precomputation cost



RPQ Operator Design

How to adapt transitive closure algorithms to solve non-nested Kleene star 

clause on labeled digraphs?



RPQ Operator Design

RPQ: (X, dislike+, Y)

Materializing 

dislike

Reachability Graph (R.G.)



RPQ Operator Design

Question: what if there is not enough memory for R.G.?

Materializing 

dislike

Virtual Reachability Graph



Size Estimation Overview

Non-Kleene

- Capturing correlations between labels in paths is critical to a precise estimate

- We adopt the method in (Ashraf Aboulnaga et al. 2001) that captures certain degree 

of co-relationship between edge labels in paths

Kleene star

- Need estimates for transitive closures, E.g. like+

- Traditional methods produce poor estimates due to lack of deduction

- We use min-hash sketch (Edith Cohen, 1997) for estimation



RPQ Life Cycle

Next clause 

available

Return result

RPQ input Obtain clause
Clause 

type

Non-Kleene star 

clause evaluation
R.G size estimate

Nested Kleene 

star clause 

evaluation

TC evaluation

Query Plan

R.G. Construction

Result merging

Y

N



RPQ Operator Implementation 

Depending on whether the R.G. has small-world property

- Bitmap-based BFS (M. Yang and C. Zaniolo, 2014)

- Multi-source BFS (M. Then et al., 2014)



Experiments & Result analysis

Objectives
● Effectiveness of materializing reachability graph.

● Performance impact of reachability graph construction.

● Performance impact of reachability graph type and algorithm choice

NOTICE: 

All queries are designed with Kleene star clause

Below, only results from LDBC dataset are presented.



Experiments & Result analysis



Experiments & Result analysis



Conclusion & Future work

Achievement

● Boosting RPQ evaluation using partial materialization

● Switching physical TC operator depending on graph type

● Trading performance for space if necessary

Possible Improvement

● A better query estimation method

● An efficient in-memory RPQ evaluation solution without R.G.

● Facilitating graph traversal with effective cache usage



Thank You 


