
1/38

Querying Inconsistent Databases
[Some] Past Research and Future Challenges

Jef Wijsen

University of Mons

DBDBD, Ghent, December 21, 2023

2/38

Table of Contents

Motivation

Complexity of CERTAINTY(Q)

CERTAINTY(Q) in Linear Time (and in FO)

Alternative Semantics

Concluding Remarks

3/38

Table of Contents

Motivation

Complexity of CERTAINTY(Q)

CERTAINTY(Q) in Linear Time (and in FO)

Alternative Semantics

Concluding Remarks

4/38

Inconsistent Data

5/38

Inconsistent Databases

ACTORS Name Gender Age
Jolie F 48
Pitt M 59
Pitt M 60

Every actor has, at most, one gender and one age:
ACTORS PRIMARY KEY(Name).

Data cleaning takes time (and money). Can we already obtain
“reliable” information by querying the inconsistent database?

5/38

Inconsistent Databases

ACTORS Name Gender Age
Jolie F 48
Pitt M 59
Pitt M 60

Every actor has, at most, one gender and one age:
ACTORS PRIMARY KEY(Name).

Data cleaning takes time (and money). Can we already obtain
“reliable” information by querying the inconsistent database?

6/38

Querying Inconsistent Databases

For ease of presentation,
all queries return a
Boolean (true/false).

ACTORS Name Gender Age
Jolie F 48
Pitt M 59
Pitt M 60

▶ Is Pitt’s age 60?

∃y (ACTORS(Pitt, y , 60)) is “possibly false”.

▶ Is Pitt older than Jolie?

∃y∃z∃v∃w
(

ACTORS(Pitt, y , z)∧
ACTORS(Jolie, v ,w) ∧ z > w

)
is “certainly true”.

A block is a maximal set of tuples of the same relation that agree
on their primary key (blocks are separated by dashed lines).
A repair (or possible world) is obtained by picking a single tuple from
each block.

With this notion, “certainly true” means “true in every repair”.

If 2 ages are stored for n actors, there are at least 2n repairs.

6/38

Querying Inconsistent Databases

For ease of presentation,
all queries return a
Boolean (true/false).

ACTORS Name Gender Age
Jolie F 48
Pitt M 59
Pitt M 60

▶ Is Pitt’s age 60?

∃y (ACTORS(Pitt, y , 60)) is “possibly false”.

▶ Is Pitt older than Jolie?

∃y∃z∃v∃w
(

ACTORS(Pitt, y , z)∧
ACTORS(Jolie, v ,w) ∧ z > w

)
is “certainly true”.

A block is a maximal set of tuples of the same relation that agree
on their primary key (blocks are separated by dashed lines).
A repair (or possible world) is obtained by picking a single tuple from
each block.

With this notion, “certainly true” means “true in every repair”.

If 2 ages are stored for n actors, there are at least 2n repairs.

7/38

Consistent Query Answering for Primary Keys

Given a Boolean query Q, define the following decision problem:

Problem CERTAINTY(Q)

Input: A database instance that may
violate primary-key constraints.

Question: Is Q true in every repair?

Example

If Q60 = ∃y (ACTORS(Pitt, y , 60)), then the answer to
CERTAINTY(Q60) is “no” on our example database.

Remark
We assume that each relation name has a fixed primary key.
Primary-key positions will be underlined. Primary keys can thus be
derived from the query.

7/38

Consistent Query Answering for Primary Keys

Given a Boolean query Q, define the following decision problem:

Problem CERTAINTY(Q)

Input: A database instance that may
violate primary-key constraints.

Question: Is Q true in every repair?

Example

If Q60 = ∃y (ACTORS(Pitt, y , 60)), then the answer to
CERTAINTY(Q60) is “no” on our example database.

Remark
We assume that each relation name has a fixed primary key.
Primary-key positions will be underlined. Primary keys can thus be
derived from the query.

8/38

Table of Contents

Motivation

Complexity of CERTAINTY(Q)

CERTAINTY(Q) in Linear Time (and in FO)

Alternative Semantics

Concluding Remarks

9/38

Solving CERTAINTY(Q)
▶ A general solution in exponential time:

Input: a database D
for each repair R of D do

if Q is false in R then
return “no” (and halt)

return “yes”

� CERTAINTY(Q) is in coNP for first-order queries Q.

▶ A smarter solution for Q60 = ∃y (ACTORS(Pitt, y , 60)):
Input: a database D
Let Q60 := ∃y∃z (ACTORS(Pitt, y , z) ∧ ¬ (z = 60))
if Q60 is true and Q60 is false in D then

return “yes”

else
return “no”

� CERTAINTY(Q60) is in the low complexity class FO

(i.e., solvable by a first-order logic formula).

9/38

Solving CERTAINTY(Q)
▶ A general solution in exponential time:

Input: a database D
for each repair R of D do

if Q is false in R then
return “no” (and halt)

return “yes”

� CERTAINTY(Q) is in coNP for first-order queries Q.

▶ A smarter solution for Q60 = ∃y (ACTORS(Pitt, y , 60)):
Input: a database D
Let Q60 := ∃y∃z (ACTORS(Pitt, y , z) ∧ ¬ (z = 60))
if Q60 is true and Q60 is false in D then

return “yes”

else
return “no”

� CERTAINTY(Q60) is in the low complexity class FO

(i.e., solvable by a first-order logic formula).

9/38

Solving CERTAINTY(Q)
▶ A general solution in exponential time:

Input: a database D
for each repair R of D do

if Q is false in R then
return “no” (and halt)

return “yes”

� CERTAINTY(Q) is in coNP for first-order queries Q.

▶ A smarter solution for Q60 = ∃y (ACTORS(Pitt, y , 60)):
Input: a database D
Let Q60 := ∃y∃z (ACTORS(Pitt, y , z) ∧ ¬ (z = 60))
if Q60 is true and Q60 is false in D then

return “yes”

else
return “no”

� CERTAINTY(Q60) is in the low complexity class FO

(i.e., solvable by a first-order logic formula).

9/38

Solving CERTAINTY(Q)
▶ A general solution in exponential time:

Input: a database D
for each repair R of D do

if Q is false in R then
return “no” (and halt)

return “yes”

� CERTAINTY(Q) is in coNP for first-order queries Q.

▶ A smarter solution for Q60 = ∃y (ACTORS(Pitt, y , 60)):
Input: a database D
Let Q60 := ∃y∃z (ACTORS(Pitt, y , z) ∧ ¬ (z = 60))
if Q60 is true and Q60 is false in D then

return “yes”

else
return “no”

� CERTAINTY(Q60) is in the low complexity class FO

(i.e., solvable by a first-order logic formula).

10/38

SQL Rewriting

SELECT ‘yes’

FROM ACTORS

WHERE Name = ‘Pitt’

AND Age = 60;

⇝

SELECT ‘yes’

FROM ACTORS

WHERE Name = ‘Pitt’

AND Age = 60

AND NOT EXISTS (SELECT *

FROM ACTORS

WHERE Name = ‘Pitt’

AND Age <> 60);

11/38

The Good, the Bad and the Ugly

Theorem (DBDBD, 2023)

For Qgood = ∃y (ACTORS(Pitt, y , 60)), the decision problem
CERTAINTY(Qgood) is in FO.

Theorem ([W., 2010])

For Qbad = ∃x∃y
(
R(x , y) ∧ S(y , x)

)
, the decision problem

CERTAINTY(Qbad) is in P \ FO.
P is the class of decision problems solvable in polynomial time.

Theorem ([Chomicki and Marcinkowski, 2005])

For Qugly = ∃x1∃x2∃z
(
ACTORS(x1,M, z) ∧ ACTORS(x2,F, z)

)
,

the decision problem CERTAINTY(Qugly) is coNP-complete.

11/38

The Good, the Bad and the Ugly

Theorem (DBDBD, 2023)

For Qgood = ∃y (ACTORS(Pitt, y , 60)), the decision problem
CERTAINTY(Qgood) is in FO.

Theorem ([W., 2010])

For Qbad = ∃x∃y
(
R(x , y) ∧ S(y , x)

)
, the decision problem

CERTAINTY(Qbad) is in P \ FO.
P is the class of decision problems solvable in polynomial time.

Theorem ([Chomicki and Marcinkowski, 2005])

For Qugly = ∃x1∃x2∃z
(
ACTORS(x1,M, z) ∧ ACTORS(x2,F, z)

)
,

the decision problem CERTAINTY(Qugly) is coNP-complete.

11/38

The Good, the Bad and the Ugly

Theorem (DBDBD, 2023)

For Qgood = ∃y (ACTORS(Pitt, y , 60)), the decision problem
CERTAINTY(Qgood) is in FO.

Theorem ([W., 2010])

For Qbad = ∃x∃y
(
R(x , y) ∧ S(y , x)

)
, the decision problem

CERTAINTY(Qbad) is in P \ FO.
P is the class of decision problems solvable in polynomial time.

Theorem ([Chomicki and Marcinkowski, 2005])

For Qugly = ∃x1∃x2∃z
(
ACTORS(x1,M, z) ∧ ACTORS(x2,F, z)

)
,

the decision problem CERTAINTY(Qugly) is coNP-complete.

11/38

The Good, the Bad and the Ugly

Theorem (DBDBD, 2023)

For Qgood = ∃y (ACTORS(Pitt, y , 60)), the decision problem
CERTAINTY(Qgood) is in FO.

Theorem ([W., 2010])

For Qbad = ∃x∃y
(
R(x , y) ∧ S(y , x)

)
, the decision problem

CERTAINTY(Qbad) is in P \ FO.
P is the class of decision problems solvable in polynomial time.

Theorem ([Chomicki and Marcinkowski, 2005])

For Qugly = ∃x1∃x2∃z
(
ACTORS(x1,M, z) ∧ ACTORS(x2,F, z)

)
,

the decision problem CERTAINTY(Qugly) is coNP-complete.

12/38

Research Agenda

▶ We aim to go beyond the task of determining
CERTAINTY(Q) for individual queries Q.

▶ For “reasonable” classes C of queries, write an algorithm for
the following problem:

Complexity Classification Task

Input: A query Q in the class C.
Task: The computational complexity of

CERTAINTY(Q), in terms of complexity classes
like FO, P, coNP-complete,. . .

12/38

Research Agenda

▶ We aim to go beyond the task of determining
CERTAINTY(Q) for individual queries Q.

▶ For “reasonable” classes C of queries, write an algorithm for
the following problem:

Complexity Classification Task

Input: A query Q in the class C.
Task: The computational complexity of

CERTAINTY(Q), in terms of complexity classes
like FO, P, coNP-complete,. . .

13/38

Which Query Classes Are “Reasonable”?

▶ The class of (Boolean) conjunctive queries (a.k.a.
Select-Project-Join queries):

∃u⃗
(
R1(x⃗1, y⃗1) ∧ R2(x⃗2, y⃗2) ∧ · · · ∧ Rn(x⃗n, y⃗n)

)
. (1)

▶ The class of disjunctions of conjunctive queries (a.k.a. UCQ
queries):

Q1 ∨ Q2 ∨ · · · ∨ Qm,

where each Qi is of the form (1).

13/38

Which Query Classes Are “Reasonable”?

▶ The class of (Boolean) conjunctive queries (a.k.a.
Select-Project-Join queries):

∃u⃗
(
R1(x⃗1, y⃗1) ∧ R2(x⃗2, y⃗2) ∧ · · · ∧ Rn(x⃗n, y⃗n)

)
. (1)

▶ The class of disjunctions of conjunctive queries (a.k.a. UCQ
queries):

Q1 ∨ Q2 ∨ · · · ∨ Qm,

where each Qi is of the form (1).

14/38

Which Complexity Classes?

15/38

Classifying CERTAINTY(Q) in P/coNP-complete is Hard

Recall
If P ̸= coNP, then some problems in coNP are
neither in P nor coNP-complete.

Conjecture

If Q is a disjunction of conjunctive queries, then CERTAINTY(Q)
is in P or coNP-complete.

Theorem ([Fontaine, 2015])

The above conjecture implies
Bulatov’s dichotomy theorem for
the conservative constraint
satisfaction problem (CSP).

15/38

Classifying CERTAINTY(Q) in P/coNP-complete is Hard

Recall
If P ̸= coNP, then some problems in coNP are
neither in P nor coNP-complete.

Conjecture

If Q is a disjunction of conjunctive queries, then CERTAINTY(Q)
is in P or coNP-complete.

Theorem ([Fontaine, 2015])

The above conjecture implies
Bulatov’s dichotomy theorem for
the conservative constraint
satisfaction problem (CSP).

15/38

Classifying CERTAINTY(Q) in P/coNP-complete is Hard

Recall
If P ̸= coNP, then some problems in coNP are
neither in P nor coNP-complete.

Conjecture

If Q is a disjunction of conjunctive queries, then CERTAINTY(Q)
is in P or coNP-complete.

Theorem ([Fontaine, 2015])

The above conjecture implies
Bulatov’s dichotomy theorem for
the conservative constraint
satisfaction problem (CSP).

16/38

Is it Easier for Conjunctive Queries?

Conjecture

If Q is of the form ∃u⃗
(
R1(x⃗1, y⃗1) ∧ · · · ∧ Rn(x⃗n, y⃗n)

)
, then

CERTAINTY(Q) is in P or coNP-complete.

Theorem ([Koutris and W., 2017])

The above conjecture holds under the assumption that Ri ̸= Rj

whenever i ̸= j .

Theorem ([Padmanabha et al., 2023])

The above conjecture holds under the assumption that n = 2.

16/38

Is it Easier for Conjunctive Queries?

Conjecture

If Q is of the form ∃u⃗
(
R1(x⃗1, y⃗1) ∧ · · · ∧ Rn(x⃗n, y⃗n)

)
, then

CERTAINTY(Q) is in P or coNP-complete.

Theorem ([Koutris and W., 2017])

The above conjecture holds under the assumption that Ri ̸= Rj

whenever i ̸= j .

Theorem ([Padmanabha et al., 2023])

The above conjecture holds under the assumption that n = 2.

16/38

Is it Easier for Conjunctive Queries?

Conjecture

If Q is of the form ∃u⃗
(
R1(x⃗1, y⃗1) ∧ · · · ∧ Rn(x⃗n, y⃗n)

)
, then

CERTAINTY(Q) is in P or coNP-complete.

Theorem ([Koutris and W., 2017])

The above conjecture holds under the assumption that Ri ̸= Rj

whenever i ̸= j .

Theorem ([Padmanabha et al., 2023])

The above conjecture holds under the assumption that n = 2.

17/38

Table of Contents

Motivation

Complexity of CERTAINTY(Q)

CERTAINTY(Q) in Linear Time (and in FO)

Alternative Semantics

Concluding Remarks

18/38

The Good Among The Good, the Bad and the Ugly

A directed graph, called attack graph, is defined for every
conjunctive query.

Theorem ([Koutris and W., 2017])

Let Q = ∃u⃗
(
R1(x⃗1, y⃗1) ∧ · · · ∧ Rn(x⃗n, y⃗n)

)
with Ri ̸= Rj for i ̸= j .

Then,

▶ if Q’s attack graph is acyclic, then CERTAINTY(Q) is in FO;

▶ if Q’s attack graph is cyclic, then CERTAINTY(Q) is L-hard.

18/38

The Good Among The Good, the Bad and the Ugly

A directed graph, called attack graph, is defined for every
conjunctive query.

Theorem ([Koutris and W., 2017])

Let Q = ∃u⃗
(
R1(x⃗1, y⃗1) ∧ · · · ∧ Rn(x⃗n, y⃗n)

)
with Ri ̸= Rj for i ̸= j .

Then,

▶ if Q’s attack graph is acyclic, then CERTAINTY(Q) is in FO;

▶ if Q’s attack graph is cyclic, then CERTAINTY(Q) is L-hard.

19/38

Attack Graph N(v , x)

R1 (y , x) R2 (y , x)
S(y , z)

T (x , z , r)

P(x , y)

U(y , u)

W (u,w)

N+ = {v}
P+ = {x}
R1

+ = {y , x , z , r , u}
R2

+ = {y , x , z , r , u}
S+ = {y , x , u}
U+ = {y , x , z , r}
T+ = {x , z , y , u}
W+ = {u,w}

S+, e.g., is the closure of S ’s key w.r.t. all other FDs.
S can attack with z /∈ S+.

19/38

Attack Graph N(v , x)

R1 (y , x) R2 (y , x)
S(y , z)

T (x , z , r)

P(x , y)

U(y , u)

W (u,w)

N : v → x

R1 : y → x R2 : y → x
S : y → z

T : x , z → r

P : x → y

U : y → u

W : u,w → ∅

x

z

yy y y

u

N+ = {v}
P+ = {x}
R1

+ = {y , x , z , r , u}
R2

+ = {y , x , z , r , u}
S+ = {y , x , u}
U+ = {y , x , z , r}
T+ = {x , z , y , u}
W+ = {u,w}

S+, e.g., is the closure of S ’s key w.r.t. all other FDs.
S can attack with z /∈ S+.

20/38

Attack Graph and (Consistent) First-Order Rewriting

Q :

N(v , x)

R1 (y , x) R2 (y , x)
S(y , z)

T (x , z , r)

P(x , y)

U(y , u)

W (u,w)

We construct a first-order formula φN such that for every database:

φN is true in the database ⇐⇒ Q is true in every repair.

φN := ∃v (∃x (N(v , x)) ∧ ¬∃x (N(v , x) ∧ ¬φP(x)))

φP(x) := ∃y (P(x , y))

∧ ¬∃y (P(x , y) ∧ ¬(φR1(x , y) ∧ φR2(x , y) ∧ φS(x , y) ∧ φU(y)))

φRi (x , y) := Ri (y , x) ∧ ¬∃x ′ (Ri (y , x
′) ∧ x ′ ̸= x

)
, 1 ≤ i ≤ 2

φS(x , y) := ∃z
(
S(y , z)

)
∧ ¬∃z

(
S(y , z) ∧ ¬∃r

(
T (x , z , r)

))
φU(y) := ∃u

(
U(y , u)

)
∧ ¬∃u

(
U(y , u) ∧ ¬∃w

(
W (u,w)

))
In SQL, we get 4 embedded NOT EXISTS. . .

20/38

Attack Graph and (Consistent) First-Order Rewriting

Q :

N(v , x)

R1 (y , x) R2 (y , x)
S(y , z)

T (x , z , r)

P(x , y)

U(y , u)

W (u,w)

We construct a first-order formula φN such that for every database:

φN is true in the database ⇐⇒ Q is true in every repair.

φN := ∃v (∃x (N(v , x)) ∧ ¬∃x (N(v , x) ∧ ¬φP(x)))

φP(x) := ∃y (P(x , y))

∧ ¬∃y (P(x , y) ∧ ¬(φR1(x , y) ∧ φR2(x , y) ∧ φS(x , y) ∧ φU(y)))

φRi (x , y) := Ri (y , x) ∧ ¬∃x ′ (Ri (y , x
′) ∧ x ′ ̸= x

)
, 1 ≤ i ≤ 2

φS(x , y) := ∃z
(
S(y , z)

)
∧ ¬∃z

(
S(y , z) ∧ ¬∃r

(
T (x , z , r)

))
φU(y) := ∃u

(
U(y , u)

)
∧ ¬∃u

(
U(y , u) ∧ ¬∃w

(
W (u,w)

))
In SQL, we get 4 embedded NOT EXISTS. . .

20/38

Attack Graph and (Consistent) First-Order Rewriting

Q :

N(v , x)

R1 (y , x) R2 (y , x)
S(y , z)

T (x , z , r)

P(x , y)

U(y , u)

W (u,w)

We construct a first-order formula φN such that for every database:

φN is true in the database ⇐⇒ Q is true in every repair.

φN := ∃v (∃x (N(v , x)) ∧ ¬∃x (N(v , x) ∧ ¬φP(x)))

φP(x) := ∃y (P(x , y))

∧ ¬∃y (P(x , y) ∧ ¬(φR1(x , y) ∧ φR2(x , y) ∧ φS(x , y) ∧ φU(y)))

φRi (x , y) := Ri (y , x) ∧ ¬∃x ′ (Ri (y , x
′) ∧ x ′ ̸= x

)
, 1 ≤ i ≤ 2

φS(x , y) := ∃z
(
S(y , z)

)
∧ ¬∃z

(
S(y , z) ∧ ¬∃r

(
T (x , z , r)

))
φU(y) := ∃u

(
U(y , u)

)
∧ ¬∃u

(
U(y , u) ∧ ¬∃w

(
W (u,w)

))
In SQL, we get 4 embedded NOT EXISTS. . .

20/38

Attack Graph and (Consistent) First-Order Rewriting

Q :

N(v , x)

R1 (y , x) R2 (y , x)
S(y , z)

T (x , z , r)

P(x , y)

U(y , u)

W (u,w)

We construct a first-order formula φN such that for every database:

φN is true in the database ⇐⇒ Q is true in every repair.

φN := ∃v (∃x (N(v , x)) ∧ ¬∃x (N(v , x) ∧ ¬φP(x)))

φP(x) := ∃y (P(x , y))

∧ ¬∃y (P(x , y) ∧ ¬(φR1(x , y) ∧ φR2(x , y) ∧ φS(x , y) ∧ φU(y)))

φRi (x , y) := Ri (y , x) ∧ ¬∃x ′ (Ri (y , x
′) ∧ x ′ ̸= x

)
, 1 ≤ i ≤ 2

φS(x , y) := ∃z
(
S(y , z)

)
∧ ¬∃z

(
S(y , z) ∧ ¬∃r

(
T (x , z , r)

))
φU(y) := ∃u

(
U(y , u)

)
∧ ¬∃u

(
U(y , u) ∧ ¬∃w

(
W (u,w)

))
In SQL, we get 4 embedded NOT EXISTS. . .

20/38

Attack Graph and (Consistent) First-Order Rewriting

Q :

N(v , x)

R1 (y , x) R2 (y , x)
S(y , z)

T (x , z , r)

P(x , y)

U(y , u)

W (u,w)

We construct a first-order formula φN such that for every database:

φN is true in the database ⇐⇒ Q is true in every repair.

φN := ∃v (∃x (N(v , x)) ∧ ¬∃x (N(v , x) ∧ ¬φP(x)))

φP(x) := ∃y (P(x , y))

∧ ¬∃y (P(x , y) ∧ ¬(φR1(x , y) ∧ φR2(x , y) ∧ φS(x , y) ∧ φU(y)))

φRi (x , y) := Ri (y , x) ∧ ¬∃x ′ (Ri (y , x
′) ∧ x ′ ̸= x

)
, 1 ≤ i ≤ 2

φS(x , y) := ∃z
(
S(y , z)

)
∧ ¬∃z

(
S(y , z) ∧ ¬∃r

(
T (x , z , r)

))
φU(y) := ∃u

(
U(y , u)

)
∧ ¬∃u

(
U(y , u) ∧ ¬∃w

(
W (u,w)

))
In SQL, we get 4 embedded NOT EXISTS. . .

20/38

Attack Graph and (Consistent) First-Order Rewriting

Q :

N(v , x)

R1 (y , x) R2 (y , x)
S(y , z)

T (x , z , r)

P(x , y)

U(y , u)

W (u,w)

We construct a first-order formula φN such that for every database:

φN is true in the database ⇐⇒ Q is true in every repair.

φN := ∃v (∃x (N(v , x)) ∧ ¬∃x (N(v , x) ∧ ¬φP(x)))

φP(x) := ∃y (P(x , y))

∧ ¬∃y (P(x , y) ∧ ¬(φR1(x , y) ∧ φR2(x , y) ∧ φS(x , y) ∧ φU(y)))

φRi (x , y) := Ri (y , x) ∧ ¬∃x ′ (Ri (y , x
′) ∧ x ′ ̸= x

)
, 1 ≤ i ≤ 2

φS(x , y) := ∃z
(
S(y , z)

)
∧ ¬∃z

(
S(y , z) ∧ ¬∃r

(
T (x , z , r)

))
φU(y) := ∃u

(
U(y , u)

)
∧ ¬∃u

(
U(y , u) ∧ ¬∃w

(
W (u,w)

))
In SQL, we get 4 embedded NOT EXISTS. . .

20/38

Attack Graph and (Consistent) First-Order Rewriting

Q :

N(v , x)

R1 (y , x) R2 (y , x)
S(y , z)

T (x , z , r)

P(x , y)

U(y , u)

W (u,w)

We construct a first-order formula φN such that for every database:

φN is true in the database ⇐⇒ Q is true in every repair.

φN := ∃v (∃x (N(v , x)) ∧ ¬∃x (N(v , x) ∧ ¬φP(x)))

φP(x) := ∃y (P(x , y))

∧ ¬∃y (P(x , y) ∧ ¬(φR1(x , y) ∧ φR2(x , y) ∧ φS(x , y) ∧ φU(y)))

φRi (x , y) := Ri (y , x) ∧ ¬∃x ′ (Ri (y , x
′) ∧ x ′ ̸= x

)
, 1 ≤ i ≤ 2

φS(x , y) := ∃z
(
S(y , z)

)
∧ ¬∃z

(
S(y , z) ∧ ¬∃r

(
T (x , z , r)

))
φU(y) := ∃u

(
U(y , u)

)
∧ ¬∃u

(
U(y , u) ∧ ¬∃w

(
W (u,w)

))
In SQL, we get 4 embedded NOT EXISTS. . .

21/38

Observation Regarding Correctness

φR1(x , y) := R1(y , x) ∧ ¬∃x ′
(
R1(y , x

′) ∧ x ′ ̸= x
)

φR2(x , y) := R2(y , x) ∧ ¬∃x ′
(
R2(y , x

′) ∧ x ′ ̸= x
)

In words,

▶ φR1(x , y): there is a singleton block containing R1(y , x);

▶ φR2(x , y): there is a singleton block containing R2(y , x).

That is, Ri -blocks of size ≥ 2 can be ignored. For example,

R1 y x

a c1
a c2

R2 y x

a c1
a c2

To construct a repair that falsifies the query, pick R1(a, ci) and
R2(a, cj) such that ci ̸= cj .

21/38

Observation Regarding Correctness

φR1(x , y) := R1(y , x) ∧ ¬∃x ′
(
R1(y , x

′) ∧ x ′ ̸= x
)

φR2(x , y) := R2(y , x) ∧ ¬∃x ′
(
R2(y , x

′) ∧ x ′ ̸= x
)

In words,

▶ φR1(x , y): there is a singleton block containing R1(y , x);

▶ φR2(x , y): there is a singleton block containing R2(y , x).

That is, Ri -blocks of size ≥ 2 can be ignored. For example,

R1 y x

a c1
a c2

R2 y x

a c1
a c2

To construct a repair that falsifies the query, pick R1(a, ci) and
R2(a, cj) such that ci ̸= cj .

22/38

Attack Graph ̸= Join Tree

N(v , x)

R1 (y , x) R2 (y , x)
S(y , z)

T (x , z , r)

P(x , y)

U(y , u)

W (u,w)

The subgraph induced by atoms that contain x is not connected.

23/38

Attack Graph that Is a Join Tree

N(v , x)

R1 (y , x) R2 (y , x)
S(y , x , z)

T (x , z , r)

P(x , y)

U(y , u)

W (u,w)

Moreover, every internal node V has zero indegree in the attack
graph of the subquery rooted at V (V ∈ {P,S ,U}).
Such a join tree is called a Pair-Pruning Join Tree (PPJT).
Yannakakis’ algorithm extends to the inconsistent setting:

Theorem ([Fan et al., 2023])

If Q has a PPJT, then CERTAINTY(Q) is in LIN (i.e., problems
solvable in linear time).

23/38

Attack Graph that Is a Join Tree

N(v , x)

R1 (y , x) R2 (y , x)
S(y , x , z)

T (x , z , r)

P(x , y)

U(y , u)

W (u,w)

Moreover, every internal node V has zero indegree in the attack
graph of the subquery rooted at V (V ∈ {P,S ,U}).
Such a join tree is called a Pair-Pruning Join Tree (PPJT).
Yannakakis’ algorithm extends to the inconsistent setting:

Theorem ([Fan et al., 2023])

If Q has a PPJT, then CERTAINTY(Q) is in LIN (i.e., problems
solvable in linear time).

23/38

Attack Graph that Is a Join Tree

N(v , x)

R1 (y , x) R2 (y , x)
S(y , x , z)

T (x , z , r)

P(x , y)

U(y , u)

W (u,w)

Moreover, every internal node V has zero indegree in the attack
graph of the subquery rooted at V (V ∈ {P,S ,U}).
Such a join tree is called a Pair-Pruning Join Tree (PPJT).
Yannakakis’ algorithm extends to the inconsistent setting:

Theorem ([Fan et al., 2023])

If Q has a PPJT, then CERTAINTY(Q) is in LIN (i.e., problems
solvable in linear time).

24/38

Yannakakis+Pruning

N(v , x)

R1 (y , x)

R2 (y , x) S(y , x , z)

T (x , z , r)

P(x , y)

U(y , u)

W (u,w)

T join(x , z)← T (x , z , r)

W join(u)←W (u,w)

Answer(yes)← N(v , x) ∧ ¬N fadingkey(v)

N fadingkey(v)← N(v , x) ∧ ¬P join(x)

P join(x)← P(x , y) ∧ ¬P fadingkey(x)

P fadingkey(x)← P(x , y) ∧ ¬U join(y)

P fadingkey(x)← P(x , y) ∧ ¬S join(x , y)

P fadingkey(x)← P(x , y) ∧ ¬R join
i (x , y)

U join(y)← U(y , u) ∧ ¬U fadingkey(y)

U fadingkey(y)← U(y , u) ∧ ¬W join(u)

S join(x , y)← S(y , x , z) ∧ ¬S fadingkey(y)

S fadingkey(y)← S(y , x , z) ∧ S(y , x ′, z) ∧ x ̸= x ′

S fadingkey(y)← S(y , x , z) ∧ ¬T join(x , z)

R join
i (x , y)← Ri (y , x) ∧ ¬R fadingkey

i (y)

R fadingkey
i (y)← Ri (y , x) ∧ Ri (y , x

′) ∧ x ̸= x ′

(1 ≤ i ≤ 2)

24/38

Yannakakis+Pruning

N(v , x)

R1 (y , x)

R2 (y , x) S(y , x , z)

T (x , z , r)

P(x , y)

U(y , u)

W (u,w)

T join(x , z)← T (x , z , r)

W join(u)←W (u,w)

Answer(yes)← N(v , x) ∧ ¬N fadingkey(v)

N fadingkey(v)← N(v , x) ∧ ¬P join(x)

P join(x)← P(x , y) ∧ ¬P fadingkey(x)

P fadingkey(x)← P(x , y) ∧ ¬U join(y)

P fadingkey(x)← P(x , y) ∧ ¬S join(x , y)

P fadingkey(x)← P(x , y) ∧ ¬R join
i (x , y)

U join(y)← U(y , u) ∧ ¬U fadingkey(y)

U fadingkey(y)← U(y , u) ∧ ¬W join(u)

S join(x , y)← S(y , x , z) ∧ ¬S fadingkey(y)

S fadingkey(y)← S(y , x , z) ∧ S(y , x ′, z) ∧ x ̸= x ′

S fadingkey(y)← S(y , x , z) ∧ ¬T join(x , z)

R join
i (x , y)← Ri (y , x) ∧ ¬R fadingkey

i (y)

R fadingkey
i (y)← Ri (y , x) ∧ Ri (y , x

′) ∧ x ̸= x ′

(1 ≤ i ≤ 2)

24/38

Yannakakis+Pruning

N(v , x)

R1 (y , x)

R2 (y , x) S(y , x , z)

T (x , z , r)

P(x , y)

U(y , u)

W (u,w)

T join(x , z)← T (x , z , r)

W join(u)←W (u,w)

Answer(yes)← N(v , x) ∧ ¬N fadingkey(v)

N fadingkey(v)← N(v , x) ∧ ¬P join(x)

P join(x)← P(x , y) ∧ ¬P fadingkey(x)

P fadingkey(x)← P(x , y) ∧ ¬U join(y)

P fadingkey(x)← P(x , y) ∧ ¬S join(x , y)

P fadingkey(x)← P(x , y) ∧ ¬R join
i (x , y)

U join(y)← U(y , u) ∧ ¬U fadingkey(y)

U fadingkey(y)← U(y , u) ∧ ¬W join(u)

S join(x , y)← S(y , x , z) ∧ ¬S fadingkey(y)

S fadingkey(y)← S(y , x , z) ∧ S(y , x ′, z) ∧ x ̸= x ′

S fadingkey(y)← S(y , x , z) ∧ ¬T join(x , z)

R join
i (x , y)← Ri (y , x) ∧ ¬R fadingkey

i (y)

R fadingkey
i (y)← Ri (y , x) ∧ Ri (y , x

′) ∧ x ̸= x ′

(1 ≤ i ≤ 2)

24/38

Yannakakis+Pruning

N(v , x)

R1 (y , x)

R2 (y , x) S(y , x , z)

T (x , z , r)

P(x , y)

U(y , u)

W (u,w)

T join(x , z)← T (x , z , r)

W join(u)←W (u,w)

Answer(yes)← N(v , x) ∧ ¬N fadingkey(v)

N fadingkey(v)← N(v , x) ∧ ¬P join(x)

P join(x)← P(x , y) ∧ ¬P fadingkey(x)

P fadingkey(x)← P(x , y) ∧ ¬U join(y)

P fadingkey(x)← P(x , y) ∧ ¬S join(x , y)

P fadingkey(x)← P(x , y) ∧ ¬R join
i (x , y)

U join(y)← U(y , u) ∧ ¬U fadingkey(y)

U fadingkey(y)← U(y , u) ∧ ¬W join(u)

S join(x , y)← S(y , x , z) ∧ ¬S fadingkey(y)

S fadingkey(y)← S(y , x , z) ∧ S(y , x ′, z) ∧ x ̸= x ′

S fadingkey(y)← S(y , x , z) ∧ ¬T join(x , z)

R join
i (x , y)← Ri (y , x) ∧ ¬R fadingkey

i (y)

R fadingkey
i (y)← Ri (y , x) ∧ Ri (y , x

′) ∧ x ̸= x ′

(1 ≤ i ≤ 2)

24/38

Yannakakis+Pruning

N(v , x)

R1 (y , x)

R2 (y , x) S(y , x , z)

T (x , z , r)

P(x , y)

U(y , u)

W (u,w)

T join(x , z)← T (x , z , r)

W join(u)←W (u,w)

Answer(yes)← N(v , x) ∧ ¬N fadingkey(v)

N fadingkey(v)← N(v , x) ∧ ¬P join(x)

P join(x)← P(x , y) ∧ ¬P fadingkey(x)

P fadingkey(x)← P(x , y) ∧ ¬U join(y)

P fadingkey(x)← P(x , y) ∧ ¬S join(x , y)

P fadingkey(x)← P(x , y) ∧ ¬R join
i (x , y)

U join(y)← U(y , u) ∧ ¬U fadingkey(y)

U fadingkey(y)← U(y , u) ∧ ¬W join(u)

S join(x , y)← S(y , x , z) ∧ ¬S fadingkey(y)

S fadingkey(y)← S(y , x , z) ∧ S(y , x ′, z) ∧ x ̸= x ′

S fadingkey(y)← S(y , x , z) ∧ ¬T join(x , z)

R join
i (x , y)← Ri (y , x) ∧ ¬R fadingkey

i (y)

R fadingkey
i (y)← Ri (y , x) ∧ Ri (y , x

′) ∧ x ̸= x ′

(1 ≤ i ≤ 2)

24/38

Yannakakis+Pruning

N(v , x)

R1 (y , x)

R2 (y , x) S(y , x , z)

T (x , z , r)

P(x , y)

U(y , u)

W (u,w)

T join(x , z)← T (x , z , r)

W join(u)←W (u,w)

Answer(yes)← N(v , x) ∧ ¬N fadingkey(v)

N fadingkey(v)← N(v , x) ∧ ¬P join(x)

P join(x)← P(x , y) ∧ ¬P fadingkey(x)

P fadingkey(x)← P(x , y) ∧ ¬U join(y)

P fadingkey(x)← P(x , y) ∧ ¬S join(x , y)

P fadingkey(x)← P(x , y) ∧ ¬R join
i (x , y)

U join(y)← U(y , u) ∧ ¬U fadingkey(y)

U fadingkey(y)← U(y , u) ∧ ¬W join(u)

S join(x , y)← S(y , x , z) ∧ ¬S fadingkey(y)

S fadingkey(y)← S(y , x , z) ∧ S(y , x ′, z) ∧ x ̸= x ′

S fadingkey(y)← S(y , x , z) ∧ ¬T join(x , z)

R join
i (x , y)← Ri (y , x) ∧ ¬R fadingkey

i (y)

R fadingkey
i (y)← Ri (y , x) ∧ Ri (y , x

′) ∧ x ̸= x ′

(1 ≤ i ≤ 2)

25/38

LinCQA

▶ LinCQA is a system that takes as input any query with
a PPJT and outputs rewritings in both SQL and non-recursive
Datalog with negation.

▶ https://github.com/xiatingouyang/LinCQA/

▶ See [Fan et al., 2023] for experiments.

https://github.com/xiatingouyang/LinCQA/

26/38

Table of Contents

Motivation

Complexity of CERTAINTY(Q)

CERTAINTY(Q) in Linear Time (and in FO)

Alternative Semantics
Range Consistent Query Answering
Counting Variant of CERTAINTY(Q)

Concluding Remarks

27/38

Table of Contents

Motivation

Complexity of CERTAINTY(Q)

CERTAINTY(Q) in Linear Time (and in FO)

Alternative Semantics
Range Consistent Query Answering
Counting Variant of CERTAINTY(Q)

Concluding Remarks

28/38

Range Consistent Query Answering [Arenas et al., 2001]

For queries returning numbers instead of Booleans.
For ease of presentation, all queries return a single number.

MOVIES
Title Actor
Mr. & Mrs. Smith Jolie
Mr. & Mrs. Smith Pitt
Mr. & Mrs. Smith Reeves

ACTORS
Name Gender Age
Jolie F 48
Pitt F 59
Pitt M 60
Reeves F 52
Reeves F 53

Get the sum of ages of all actresses in Mr. & Mrs. Smith:

SUM(z)← MOVIES(Mr. & Mrs. Smith, x),ACTORS(x ,F, z).

▶ The lowest answer across all repairs is 48 + 52 = 100;

▶ the greatest answer across all repairs is 48 + 59 + 53 = 160;

▶ the interval [100, 160] is called the range consistent answer.

28/38

Range Consistent Query Answering [Arenas et al., 2001]

For queries returning numbers instead of Booleans.
For ease of presentation, all queries return a single number.

MOVIES
Title Actor
Mr. & Mrs. Smith Jolie
Mr. & Mrs. Smith Pitt
Mr. & Mrs. Smith Reeves

ACTORS
Name Gender Age
Jolie F 48
Pitt F 59
Pitt M 60
Reeves F 52
Reeves F 53

Get the sum of ages of all actresses in Mr. & Mrs. Smith:

SUM(z)← MOVIES(Mr. & Mrs. Smith, x),ACTORS(x ,F, z).

▶ The lowest answer across all repairs is 48 + 52 = 100;

▶ the greatest answer across all repairs is 48 + 59 + 53 = 160;

▶ the interval [100, 160] is called the range consistent answer.

28/38

Range Consistent Query Answering [Arenas et al., 2001]

For queries returning numbers instead of Booleans.
For ease of presentation, all queries return a single number.

MOVIES
Title Actor
Mr. & Mrs. Smith Jolie
Mr. & Mrs. Smith Pitt
Mr. & Mrs. Smith Reeves

ACTORS
Name Gender Age
Jolie F 48
Pitt F 59
Pitt M 60
Reeves F 52
Reeves F 53

Get the sum of ages of all actresses in Mr. & Mrs. Smith:

SUM(z)← MOVIES(Mr. & Mrs. Smith, x),ACTORS(x ,F, z).

▶ The lowest answer across all repairs is 48 + 52 = 100;

▶ the greatest answer across all repairs is 48 + 59 + 53 = 160;

▶ the interval [100, 160] is called the range consistent answer.

29/38

Formal Setting

▶ Numerical terms f () expressible in the (safe) rule format

AGG(r)← R1(x⃗1, y⃗1) ∧ R2(x⃗2, y⃗2) ∧ · · · ∧ Rn(x⃗n, y⃗n), (2)

where r is either a numerical variable or a constant, and AGG

is an aggregate operator (e.g., MAX, MIN, SUM, COUNT, AVG).

▶ Given a database instance, let f +() and f −() be, respectively,
the greatest and smallest values of f () across all repairs.

▶ Aggregate logic = first-order logic + aggregate operators.

▶ When can f +() and f −() be expressed in aggregate logic?

▶ Not investigated since [Fuxman, 2007].
▶ It is easily shown that f +() and f −() are not expressible in

aggregate logic if the attack graph of the body of (2) has a
cycle.

▶ Does the converse hold?

29/38

Formal Setting

▶ Numerical terms f () expressible in the (safe) rule format

AGG(r)← R1(x⃗1, y⃗1) ∧ R2(x⃗2, y⃗2) ∧ · · · ∧ Rn(x⃗n, y⃗n), (2)

where r is either a numerical variable or a constant, and AGG

is an aggregate operator (e.g., MAX, MIN, SUM, COUNT, AVG).

▶ Given a database instance, let f +() and f −() be, respectively,
the greatest and smallest values of f () across all repairs.

▶ Aggregate logic = first-order logic + aggregate operators.

▶ When can f +() and f −() be expressed in aggregate logic?

▶ Not investigated since [Fuxman, 2007].
▶ It is easily shown that f +() and f −() are not expressible in

aggregate logic if the attack graph of the body of (2) has a
cycle.

▶ Does the converse hold?

29/38

Formal Setting

▶ Numerical terms f () expressible in the (safe) rule format

AGG(r)← R1(x⃗1, y⃗1) ∧ R2(x⃗2, y⃗2) ∧ · · · ∧ Rn(x⃗n, y⃗n), (2)

where r is either a numerical variable or a constant, and AGG

is an aggregate operator (e.g., MAX, MIN, SUM, COUNT, AVG).

▶ Given a database instance, let f +() and f −() be, respectively,
the greatest and smallest values of f () across all repairs.

▶ Aggregate logic = first-order logic + aggregate operators.

▶ When can f +() and f −() be expressed in aggregate logic?

▶ Not investigated since [Fuxman, 2007].
▶ It is easily shown that f +() and f −() are not expressible in

aggregate logic if the attack graph of the body of (2) has a
cycle.

▶ Does the converse hold?

30/38

Rewriting Example

SUM(z)← MOVIES(Mr. & Mrs. Smith, x),ACTORS(x ,F, z).

▶ Upper bound rewriting:

U(x , MAX(z))← MOVIES(Mr. & Mrs. Smith, x),ACTORS(x ,F, z)

UB(SUM(z))← U(x , z)

▶ Lower bound rewriting:

POSSIBLE M(x)← ACTORS(x ,M, z)

CERTAIN F(x , z)← ACTORS(x ,F, z),¬POSSIBLE M(x)

L(x , MIN(z))← MOVIES(Mr. & Mrs. Smith, x),CERTAIN F(x , z)

LB(SUM(z))← L(x , z)

31/38

Table of Contents

Motivation

Complexity of CERTAINTY(Q)

CERTAINTY(Q) in Linear Time (and in FO)

Alternative Semantics
Range Consistent Query Answering
Counting Variant of CERTAINTY(Q)

Concluding Remarks

32/38

Counting
Given a Boolean query Q, define the following counting problem:

Problem ♯CERTAINTY(Q)

Input: A database instance that may
violate primary-key constraints.

Question: How many repairs of satisfy Q?

Complexity Classification Task

Input: A self-join-free Boolean conjunctive query Q.

Task: Determine lower and upper complexity bounds on
the complexity of ♯CERTAINTY(q), in terms of
common complexity classes like FP and ♯P.

▶ Solved in [Maslowski and W., 2013] and generalized to FDs
in [Calautti et al., 2022].

▶ Same problem as query answering in block-independent
disjoint (BID) probabilistic databases under the restriction
that in every block b, every tuple has probability 1

|b| .

32/38

Counting
Given a Boolean query Q, define the following counting problem:

Problem ♯CERTAINTY(Q)

Input: A database instance that may
violate primary-key constraints.

Question: How many repairs of satisfy Q?

Complexity Classification Task

Input: A self-join-free Boolean conjunctive query Q.

Task: Determine lower and upper complexity bounds on
the complexity of ♯CERTAINTY(q), in terms of
common complexity classes like FP and ♯P.

▶ Solved in [Maslowski and W., 2013] and generalized to FDs
in [Calautti et al., 2022].

▶ Same problem as query answering in block-independent
disjoint (BID) probabilistic databases under the restriction
that in every block b, every tuple has probability 1

|b| .

32/38

Counting
Given a Boolean query Q, define the following counting problem:

Problem ♯CERTAINTY(Q)

Input: A database instance that may
violate primary-key constraints.

Question: How many repairs of satisfy Q?

Complexity Classification Task

Input: A self-join-free Boolean conjunctive query Q.

Task: Determine lower and upper complexity bounds on
the complexity of ♯CERTAINTY(q), in terms of
common complexity classes like FP and ♯P.

▶ Solved in [Maslowski and W., 2013] and generalized to FDs
in [Calautti et al., 2022].

▶ Same problem as query answering in block-independent
disjoint (BID) probabilistic databases under the restriction
that in every block b, every tuple has probability 1

|b| .

33/38

BID Databases

Every input to CERTAINTY(Q) is a block-independent disjoint
database without probabilities (or with uniform probabilities).

� Inconsistency is not only a burden, but also a chance. 1

1Inspired by [Kern-Isberner and Lukasiewicz, 2017]. The image is
from [Dalvi et al., 2009].

34/38

Table of Contents

Motivation

Complexity of CERTAINTY(Q)

CERTAINTY(Q) in Linear Time (and in FO)

Alternative Semantics

Concluding Remarks

35/38

Concluding Remarks
Consistent Query Answering is an active research area
since [Arenas et al., 1999]:
▶ Database repairing w.r.t. different classes of constraints
▶ Database repairing and data exchange
▶ Database repairing and approximations
▶ Database repairing and preferences
▶ Database repairing and implementations
▶ Database repairing and database management systems
▶ Consistent query answering for queries with negation
▶ Consistent query answering in description logics
▶ Consistent query answering over graph databases
▶ . . .

36/38

Thanks!

FYI, Brad Pitt celebrated his 60th birthday on December 18, 2023.

37/38

References I

Arenas, M., Bertossi, L. E., and Chomicki, J. (1999).

Consistent query answers in inconsistent databases.
In PODS, pages 68–79. ACM Press.

Arenas, M., Bertossi, L. E., and Chomicki, J. (2001).

Scalar aggregation in fd-inconsistent databases.
In ICDT, volume 1973 of Lecture Notes in Computer Science, pages 39–53. Springer.

Calautti, M., Livshits, E., Pieris, A., and Schneider, M. (2022).

Counting database repairs entailing a query: The case of functional dependencies.
In PODS, pages 403–412. ACM.

Chomicki, J. and Marcinkowski, J. (2005).

Minimal-change integrity maintenance using tuple deletions.
Inf. Comput., 197(1-2):90–121.

Dalvi, N. N., Ré, C., and Suciu, D. (2009).

Probabilistic databases: diamonds in the dirt.
Commun. ACM, 52(7):86–94.

Fan, Z., Koutris, P., Ouyang, X., and Wijsen, J. (2023).

LinCQA: Faster consistent query answering with linear time guarantees.
Proc. ACM Manag. Data, 1(1):38:1–38:25.

Fontaine, G. (2015).

Why is it hard to obtain a dichotomy for consistent query answering?
ACM Trans. Comput. Log., 16(1):7:1–7:24.

Fuxman, A. (2007).

Efficient query processing over inconsistent databases.
PhD thesis, University of Toronto.

38/38

References II

Kern-Isberner, G. and Lukasiewicz, T. (2017).

Many facets of reasoning under uncertainty, inconsistency, vagueness, and preferences: A brief survey.
KI, 31(1):9–13.

Koutris, P. and W., J. (2017).

Consistent query answering for self-join-free conjunctive queries under primary key constraints.
ACM Trans. Database Syst., 42(2):9:1–9:45.

Maslowski, D. and W., J. (2013).

A dichotomy in the complexity of counting database repairs.
J. Comput. Syst. Sci., 79(6):958–983.

Padmanabha, A., Segoufin, L., and Sirangelo, C. (2023).

A dichotomy in the complexity of consistent query answering for two atom queries with self-join.
CoRR, abs/2309.12059.

W., J. (2010).

A remark on the complexity of consistent conjunctive query answering under primary key violations.
Inf. Process. Lett., 110(21):950–955.

	Motivation
	Complexity of CERTAINTY(Q)
	CERTAINTY(Q) in Linear Time (and in FO)
	Alternative Semantics
	Range Consistent Query Answering
	Counting Variant of CERTAINTY(Q)

	Concluding Remarks

