Querying Inconsistent Databases [Some] Past Research and Future Challenges

Jef Wijsen

University of Mons

DBDBD, Ghent, December 21, 2023

Table of Contents

Motivation

Complexity of CERTAINTY(Q)

CERTAINTY(Q) in Linear Time (and in FO)

Alternative Semantics

Concluding Remarks

Table of Contents

Motivation

Complexity of CERTAINTY(Q)

CERTAINTY(Q) in Linear Time (and in FO)

Alternative Semantics

Concluding Remarks

Inconsistent Data

≅ Perrey Reeves			文 _人 18 Ian
Article Talk	Read	Edit	View history
From Wikipedia, the free encyclopedia			
Perrey Reeves (born 1970 or 1971 (age 52–53)) ^[1] is an American film and television astrosc. She is best known for her	Perrey Reeves		ey Reeves
recurring role as Melissa Gold on the television series		1	
Entourage from 2004 to 2011 and Marissa Jones in the 2003		1112	
Entourage from 2004 to 2011 and Marissa Jones in the 2003 comedy Old School.	-		
		R	

Inconsistent Databases

ACTORS	<u>Name</u>	Gender	Age
	Jolie	F	48
	Pitt	M	59
	Pitt	М	60

Every actor has, at most, one gender and one age: ACTORS PRIMARY KEY(Name).

Data cleaning takes time (and money). Can we already obtain "reliable" information by querying the inconsistent database?

Inconsistent Databases

ACTORS	<u>Name</u>	Gender	Age
	Jolie	F	48
	Pitt	M	59
	Pitt	M	_60_

Every actor has, at most, one gender and one age: ACTORS PRIMARY KEY(Name).

Data cleaning takes time (and money). Can we already obtain "reliable" information by querying the inconsistent database?

Querying Inconsistent Databases

For ease of presentation,	ACTORS	<u>Name</u>	Gender	Age
all queries return a		Jolie	F	48
Boolean (true/false).		Pitt	M	59
		Pitt	М	60

Is Pitt's age 60?

 $\exists y (ACTORS(\underline{Pitt}, y, 60)) \text{ is "possibly false"}.$

Is Pitt older than Jolie?

$$\exists y \exists z \exists v \exists w \left(\begin{array}{c} \mathsf{ACTORS}(\underline{\mathsf{Pitt}}, y, z) \land \\ \mathsf{ACTORS}(\underline{\mathsf{Jolie}}, v, w) \land z > w \end{array} \right) \text{ is "certainly true"}$$

A block is a maximal set of tuples of the same relation that agree on their primary key (blocks are separated by dashed lines). A repair (or possible world) is obtained by picking a single tuple from each block.

With this notion, "certainly true" means "true in every repair". If 2 ages are stored for n actors, there are at least 2^n repairs.

Querying Inconsistent Databases

For ease of presentation,	ACTORS	<u>Name</u>	Gender	Age
all queries return a		Jolie	F	48
Boolean (true/false).		Pitt	M	59
		Pitt	Μ	60

Is Pitt's age 60?

 $\exists y (ACTORS(\underline{Pitt}, y, 60)) \text{ is "possibly false"}.$

Is Pitt older than Jolie?

$$\exists y \exists z \exists v \exists w \left(\begin{array}{c} \mathsf{ACTORS}(\underline{\mathsf{Pitt}}, y, z) \land \\ \mathsf{ACTORS}(\underline{\mathsf{Jolie}}, v, w) \land z > w \end{array} \right) \text{ is "certainly true"}.$$

A block is a maximal set of tuples of the same relation that agree on their primary key (blocks are separated by dashed lines). A repair (or possible world) is obtained by picking a single tuple from each block.

With this notion, "certainly true" means "true in every repair". If 2 ages are stored for n actors, there are at least 2^n repairs.

Consistent Query Answering for Primary Keys

Given a Boolean query Q, define the following decision problem:

Problem CERTAINTY(Q)

Input: A database instance that may violate primary-key constraints.

Question: Is Q true in every repair?

Example

If $Q_{60} = \exists y (ACTORS(\underline{Pitt}, y, 60))$, then the answer to CERTAINTY(Q_{60}) is "no" on our example database.

Remark

We assume that each relation name has a fixed primary key. Primary-key positions will be underlined. Primary keys can thus be derived from the query.

Consistent Query Answering for Primary Keys

Given a Boolean query Q, define the following decision problem:

Problem CERTAINTY(Q)

Input: A database instance that may violate primary-key constraints.

Question: Is Q true in every repair?

Example

If $Q_{60} = \exists y (ACTORS(\underline{Pitt}, y, 60))$, then the answer to CERTAINTY(Q_{60}) is "no" on our example database.

Remark

We assume that each relation name has a fixed primary key. Primary-key positions will be underlined. Primary keys can thus be derived from the query.

Table of Contents

Motivation

Complexity of CERTAINTY(Q)

CERTAINTY(Q) in Linear Time (and in FO)

Alternative Semantics

Concluding Remarks

A general solution in exponential time: **Input:** a database D for each repair R of D do if Q is false in R then **return** "no" (and halt) return "yes"

9/38

A general solution in exponential time:
 Input: a database D
 for each repair R of D do
 if Q is false in R then
 return "no" (and halt)
 return "yes"

CERTAINTY(Q) is in coNP for first-order queries Q.

A smarter solution for Q₆₀ = ∃y (ACTORS(<u>Pitt</u>, y, 60)):
 Input: a database D
 Let Q₆₀ := ∃y∃z (ACTORS(<u>Pitt</u>, y, z) ∧ ¬(z = 60))
 if Q₆₀ is true and Q₆₀ is false in D then
 _ return "yes"
 else
 _ return "no"

CERTAINTY(Q_{60}) is in the low complexity class FO (i.e., solvable by a first-order logic formula).

A general solution in exponential time: **Input:** a database D for each repair R of D do if Q is false in R then **return** "no" (and halt) return "yes" R CERTAINTY(Q) is in coNP for first-order queries Q. A smarter solution for $Q_{60} = \exists y (ACTORS(Pitt, y, 60))$: **Input:** a database D Let $\overline{Q}_{60} := \exists y \exists z (ACTORS(Pitt, y, z) \land \neg (z = 60))$ if Q_{60} is true and \overline{Q}_{60} is false in D then **return** "yes" else L **return** "no"

(i.e., solvable by a first-order logic formula).

A general solution in exponential time: **Input:** a database D for each repair R of D do if Q is false in R then **return** "no" (and halt) return "yes" R CERTAINTY(Q) is in coNP for first-order queries Q. A smarter solution for $Q_{60} = \exists y (ACTORS(Pitt, y, 60))$: **Input:** a database D Let $\overline{Q}_{60} := \exists y \exists z (ACTORS(Pitt, y, z) \land \neg (z = 60))$ if Q_{60} is true and \overline{Q}_{60} is false in D then **return** "yes" else L **return** "no" R CERTAINTY(Q_{60}) is in the low complexity class FO

(i.e., solvable by a first-order logic formula).

9/38

SQL Rewriting

```
SELECT 'yes'
FROM ACTORS
WHERE Name = 'Pitt'
AND Age = 60;
```

 \rightarrow

```
SELECT 'yes'
FROM ACTORS
WHERE Name = 'Pitt'
AND Age = 60
AND NOT EXISTS (SELECT *
FROM ACTORS
WHERE Name = 'Pitt'
AND Age <> 60);
```


Theorem (DBDBD, 2023)

For $Q_{good} = \exists y (ACTORS(\underline{Pitt}, y, 60))$, the decision problem CERTAINTY(Q_{good}) is in FO.

Theorem ([W., 2010])

For $Q_{bad} = \exists x \exists y (R(\underline{x}, y) \land S(\underline{y}, x))$, the decision problem CERTAINTY(Q_{bad}) is in $P \setminus FO$.

P is the class of decision problems solvable in polynomial time.

Theorem ([Chomicki and Marcinkowski, 2005]) For $Q_{ugly} = \exists x_1 \exists x_2 \exists z (ACTORS(x_1, M, z) \land ACTORS(x_2, F, z))$, the decision problem CERTAINTY(Q_{ugly}) is coNP-complete.

Theorem (DBDBD, 2023)

For $Q_{\text{good}} = \exists y (\text{ACTORS}(\underline{\text{Pitt}}, y, 60))$, the decision problem CERTAINTY(Q_{good}) is in FO.

Theorem ([W., 2010])

For $Q_{bad} = \exists x \exists y (R(\underline{x}, y) \land S(\underline{y}, x))$, the decision problem CERTAINTY(Q_{bad}) is in $P \setminus FO$.

P is the class of decision problems solvable in polynomial time.

Theorem ([Chomicki and Marcinkowski, 2005]) For $Q_{ugly} = \exists x_1 \exists x_2 \exists z (ACTORS(\underline{x_1}, M, z) \land ACTORS(\underline{x_2}, F, z)),$ the decision problem CERTAINTY(Q_{ugly}) is coNP-complete.

Theorem (DBDBD, 2023) For $Q_{good} = \exists y (ACTORS(Pitt, y, 60))$, the decision problem CERTAINTY(Q_{good}) is in FO.

Theorem ([W., 2010])

For $Q_{bad} = \exists x \exists y (R(\underline{x}, y) \land S(\underline{y}, x))$, the decision problem CERTAINTY(Q_{bad}) is in $P \setminus FO$.

P is the class of decision problems solvable in polynomial time.

Theorem ([Chomicki and Marcinkowski, 2005]) For $Q_{ugly} = \exists x_1 \exists x_2 \exists z (ACTORS(\underline{x_1}, M, z) \land ACTORS(\underline{x_2}, F, z))$, the decision problem CERTAINTY(Q_{ugly}) is coNP-complete.

Theorem (DBDBD, 2023) For $Q_{good} = \exists y (ACTORS(\underline{Pitt}, y, 60))$, the decision problem CERTAINTY(Q_{good}) is in FO.

Theorem ([W., 2010])

For $Q_{bad} = \exists x \exists y (R(\underline{x}, y) \land S(\underline{y}, x))$, the decision problem CERTAINTY(Q_{bad}) is in $P \setminus FO$.

P is the class of decision problems solvable in polynomial time.

Theorem ([Chomicki and Marcinkowski, 2005]) For $Q_{ugly} = \exists x_1 \exists x_2 \exists z (ACTORS(\underline{x_1}, M, z) \land ACTORS(\underline{x_2}, F, z)),$ the decision problem CERTAINTY(Q_{ugly}) is coNP-complete.

Research Agenda

We aim to go beyond the task of determining CERTAINTY(Q) for individual queries Q.

► For "reasonable" classes C of queries, write an algorithm for the following problem:

Complexity Classification Task Input: A query Q in the class C. Task: The computational complexity of CERTAINTY(Q), in terms of complexity classes like FO, P, coNP-complete,...

Research Agenda

- We aim to go beyond the task of determining CERTAINTY(Q) for individual queries Q.
- For "reasonable" classes C of queries, write an algorithm for the following problem:

```
Complexity Classification Task

Input: A query Q in the class C.

Task: The computational complexity of

CERTAINTY(Q), in terms of complexity classes

like FO, P, coNP-complete,...
```

Which Query Classes Are "Reasonable"?

The class of (Boolean) conjunctive queries (a.k.a. Select-Project-Join queries):

$$\exists \vec{u} \left(R_1(\underline{\vec{x_1}}, \vec{y_1}) \land R_2(\underline{\vec{x_2}}, \vec{y_2}) \land \dots \land R_n(\underline{\vec{x_n}}, \vec{y_n}) \right).$$
(1)

The class of disjunctions of conjunctive queries (a.k.a. UCQ queries):

 $Q_1 \vee Q_2 \vee \cdots \vee Q_m,$

where each Q_i is of the form (1).

Which Query Classes Are "Reasonable"?

The class of (Boolean) conjunctive queries (a.k.a. Select-Project-Join queries):

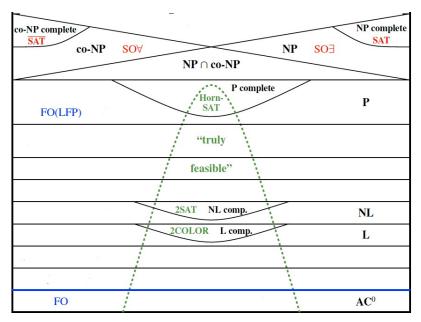
$$\exists \vec{u} \left(R_1(\underline{\vec{x_1}}, \vec{y_1}) \land R_2(\underline{\vec{x_2}}, \vec{y_2}) \land \dots \land R_n(\underline{\vec{x_n}}, \vec{y_n}) \right).$$
(1)

The class of disjunctions of conjunctive queries (a.k.a. UCQ queries):

 $Q_1 \vee Q_2 \vee \cdots \vee Q_m$,

where each Q_i is of the form (1).

Which Complexity Classes?



Classifying CERTAINTY(Q) in P/coNP-complete is Hard

Recall

If $P \neq coNP$, then some problems in coNP are neither in P nor coNP-complete.

Figure 7.1 The world of NP, reprised (assuming $P \neq NP$).

Conjecture If Q is a disjunction of conjunctive queries, then CERTAINTY(Q) is in P or coNP-complete.

Theorem ([Fontaine, 2015])

The above conjecture implies Bulatov's dichotomy theorem for the conservative constraint satisfaction problem (CSP). Classifying CERTAINTY(Q) in P/coNP-complete is Hard

Recall

If $P \neq coNP$, then some problems in coNP are neither in P nor coNP-complete.

Figure 7.1 The world of NP, reprised (assuming $P \neq NP$).

Conjecture If Q is a disjunction of conjunctive queries, then CERTAINTY(Q) is in P or coNP-complete.

Theorem ([Fontaine, 2015])

The above conjecture implies Bulatov's dichotomy theorem for the conservative constraint satisfaction problem (CSP). Classifying CERTAINTY(Q) in P/coNP-complete is Hard

Recall

If $P \neq coNP$, then some problems in coNP are neither in P nor coNP-complete.

Figure 7.1 The world of NP, reprised (assuming $P \neq NP$).

Conjecture If Q is a disjunction of conjunctive queries, then CERTAINTY(Q) is in P or coNP-complete.

Theorem ([Fontaine, 2015])

The above conjecture implies Bulatov's dichotomy theorem for the conservative constraint satisfaction problem (CSP).

Conservative constraint satisfaction re-revisited Andrei A. Bulatov¹ Is it Easier for Conjunctive Queries?

Conjecture

If Q is of the form $\exists \vec{u} (R_1(\vec{x_1}, \vec{y_1}) \land \cdots \land R_n(\vec{x_n}, \vec{y_n}))$, then CERTAINTY(Q) is in P or coNP-complete.

Theorem ([Koutris and W., 2017])

The above conjecture holds under the assumption that $R_i \neq R_j$ whenever $i \neq j$.

Theorem ([Padmanabha et al., 2023])

The above conjecture holds under the assumption that n = 2.

Is it Easier for Conjunctive Queries?

Conjecture

If Q is of the form $\exists \vec{u} (R_1(\vec{x_1}, \vec{y_1}) \land \cdots \land R_n(\vec{x_n}, \vec{y_n}))$, then CERTAINTY(Q) is in P or coNP-complete.

Theorem ([Koutris and W., 2017])

The above conjecture holds under the assumption that $R_i \neq R_j$ whenever $i \neq j$.

Theorem ([Padmanabha et al., 2023])

The above conjecture holds under the assumption that n = 2.

Is it Easier for Conjunctive Queries?

Conjecture

If Q is of the form $\exists \vec{u} (R_1(\vec{x_1}, \vec{y_1}) \land \cdots \land R_n(\vec{x_n}, \vec{y_n}))$, then CERTAINTY(Q) is in P or coNP-complete.

Theorem ([Koutris and W., 2017])

The above conjecture holds under the assumption that $R_i \neq R_j$ whenever $i \neq j$.

Theorem ([Padmanabha et al., 2023])

The above conjecture holds under the assumption that n = 2.

Table of Contents

Motivation

Complexity of CERTAINTY(Q)

CERTAINTY(Q) in Linear Time (and in FO)

Alternative Semantics

Concluding Remarks

The Good Among The Good, the Bad and the Ugly

A directed graph, called attack graph, is defined for every conjunctive query.

Theorem ([Koutris and W., 2017]) Let $Q = \exists \vec{u} (R_1(\underline{\vec{x_1}}, \vec{y_1}) \land \dots \land R_n(\underline{\vec{x_n}}, \vec{y_n}))$ with $R_i \neq R_j$ for $i \neq j$. Then,

• if Q's attack graph is acyclic, then CERTAINTY(Q) is in FO;

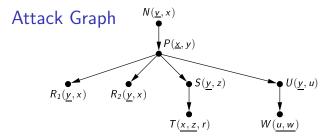
• if Q's attack graph is cyclic, then CERTAINTY(Q) is L-hard.

The Good Among The Good, the Bad and the Ugly

A directed graph, called attack graph, is defined for every conjunctive query.

Theorem ([Koutris and W., 2017]) Let $Q = \exists \vec{u} (R_1(\underline{\vec{x_1}}, \vec{y_1}) \land \cdots \land R_n(\underline{\vec{x_n}}, \vec{y_n}))$ with $R_i \neq R_j$ for $i \neq j$. Then,

- if Q's attack graph is acyclic, then CERTAINTY(Q) is in FO;
- if Q's attack graph is cyclic, then CERTAINTY(Q) is L-hard.



$$N^{+} = \{v\}$$

$$P^{+} = \{x\}$$

$$R_{1}^{+} = \{y, x, z, r, u\}$$

$$R_{2}^{+} = \{y, x, z, r, u\}$$

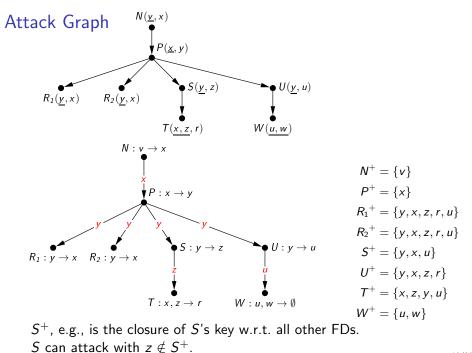
$$S^{+} = \{y, x, u\}$$

$$U^{+} = \{y, x, z, r\}$$

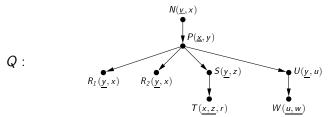
$$T^{+} = \{x, z, y, u\}$$

$$W^{+} = \{u, w\}$$
or EDs

 S^+ , e.g., is the closure of S's key w.r.t. all other FDs. S can attack with $z \notin S^+$.

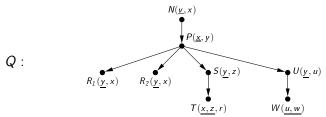


19/38



We construct a first-order formula φ_N such that for every database: φ_N is true in the database $\iff Q$ is true in every repair.

$$\begin{split} \varphi_{N} &:= \exists \mathbf{v} \left(\exists \mathbf{x} \left(N(\underline{\mathbf{v}}, \mathbf{x}) \right) \wedge \neg \exists \mathbf{x} \left(N(\underline{\mathbf{v}}, \mathbf{x}) \wedge \neg \varphi_{P}(\mathbf{x}) \right) \right) \\ &:= \exists \mathbf{v} \left(P(\mathbf{x}, \mathbf{y}) \right) \\ &\wedge \neg \exists \mathbf{y} \left(P(\underline{\mathbf{x}}, \mathbf{y}) \right) \wedge \neg (\varphi_{R_{1}}(\mathbf{x}, \mathbf{y}) \wedge \varphi_{R_{2}}(\mathbf{x}, \mathbf{y}) \wedge \varphi_{S}(\mathbf{x}, \mathbf{y}) \wedge \varphi_{S}(\mathbf{x}, \mathbf{y}) \right) \\ &\wedge \neg \exists \mathbf{y} \left(P(\underline{\mathbf{x}}, \mathbf{y}) \wedge \neg (\varphi_{R_{1}}(\mathbf{x}, \mathbf{y}) \wedge \varphi_{R_{2}}(\mathbf{x}, \mathbf{y}) \wedge (\varphi_{S}(\mathbf{y}, \mathbf{y}) \wedge \varphi_{S}(\mathbf{x}, \mathbf{y}) \wedge \varphi_{S}(\mathbf{x}, \mathbf{y}) \wedge \varphi_{S}(\mathbf{x}, \mathbf{y}) \right) \\ &= \exists \mathbf{x} \left(\varphi_{S}(\mathbf{y}, \mathbf{x}) \wedge (\varphi_{S}(\mathbf{y}, \mathbf{y}) \wedge (\varphi_{S}(\mathbf{y}, \mathbf{y}$$

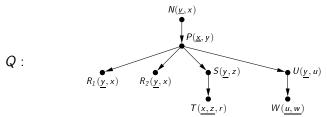


We construct a first-order formula φ_N such that for every database: φ_N is true in the database $\iff Q$ is true in every repair.

 $\varphi_{\mathsf{N}} := \exists \mathsf{v} \left(\exists x \left(\mathsf{N}(\underline{\mathsf{v}}, x) \right) \land \neg \exists x \left(\mathsf{N}(\underline{\mathsf{v}}, x) \land \neg \varphi_{\mathsf{P}}(x) \right) \right)$ $\varphi_{\mathsf{P}}(x) := \exists y \left(\mathsf{P}(\underline{x}, y) \right)$

 $\wedge \neg \exists y \left(P(\underline{x}, \underline{y}) \land \neg \left(\varphi_{R_1}(\underline{x}, \underline{y}) \land \varphi_{R_2}(\underline{x}, \underline{y}) \land \varphi_{S}(\underline{x}, \underline{y}) \land \varphi_{U}(\underline{y}) \right) \right)$ $\varphi_{R_i}(\underline{x}, \underline{y}) := R_i(\underline{y}, \underline{x}) \land \neg \exists x' \left(R_i(\underline{y}, \underline{x'}) \land \underline{x'} \neq \underline{x} \right), 1 \le i \le 2$ $\varphi_S(\underline{x}, \underline{y}) := \exists z \left(S(\underline{y}, \underline{z}) \right) \land \neg \exists z \left(S(\underline{y}, \underline{z}) \land \neg \exists r \left(T(\underline{x}, \underline{z}, r) \right) \right)$ $\varphi_U(\underline{y}) := \exists u \left(U(\underline{y}, u) \right) \land \neg \exists u \left(U(\underline{y}, u) \land \neg \exists w \left(W(\underline{u}, \underline{w}) \right) \right)$

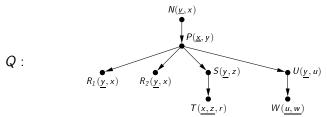
In SQL, we get 4 embedded NOT EXISTS....



We construct a first-order formula φ_N such that for every database: φ_N is true in the database $\iff Q$ is true in every repair.

$$\begin{split} \varphi_{\mathsf{N}} &:= \exists v \left(\exists x \left(\mathsf{N}(\underline{v}, x) \right) \land \neg \exists x \left(\mathsf{N}(\underline{v}, x) \land \neg \varphi_{\mathsf{P}}(x) \right) \right) \\ \varphi_{\mathsf{P}}(x) &:= \exists y \left(\mathsf{P}(\underline{x}, y) \right) \\ \land \neg \exists y \left(\mathsf{P}(\underline{x}, y) \land \neg (\varphi_{\mathsf{R}_{1}}(x, y) \land \varphi_{\mathsf{R}_{2}}(x, y) \land \varphi_{\mathsf{S}}(x, y) \land \varphi_{\mathsf{U}}(y) \right) \right) \\ \varphi_{\mathsf{R}_{i}}(x, y) &:= \mathsf{R}_{i}(\underline{y}, x) \land \neg \exists x' \left(\mathsf{R}_{i}(\underline{y}, x') \land x' \neq x \right), 1 \leq i \leq 2 \\ \varphi_{\mathsf{S}}(x, y) &:= \exists z \left(\mathsf{S}(\underline{y}, z) \right) \land \neg \exists z \left(\mathsf{S}(\underline{y}, z) \land \neg \exists r \left(\mathsf{T}(\underline{x}, z, r) \right) \right) \\ \varphi_{\mathsf{U}}(y) &:= \exists u \left(U(\underline{y}, u) \right) \land \neg \exists u \left(U(\underline{y}, u) \land \neg \exists w \left(W(\underline{u}, w) \right) \right) \end{split}$$

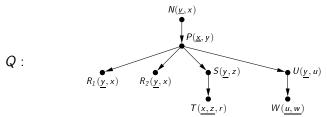
In SQL, we get 4 embedded NOT EXISTS...



We construct a first-order formula φ_N such that for every database: φ_N is true in the database $\iff Q$ is true in every repair.

$$\begin{split} \varphi_{\mathsf{N}} &:= \exists v \left(\exists x \left(\mathsf{N}(\underline{v}, x) \right) \land \neg \exists x \left(\mathsf{N}(\underline{v}, x) \land \neg \varphi_{\mathsf{P}}(x) \right) \right) \\ \varphi_{\mathsf{P}}(x) &:= \exists y \left(\mathsf{P}(\underline{x}, y) \right) \\ \land \neg \exists y \left(\mathsf{P}(\underline{x}, y) \land \neg (\varphi_{\mathsf{R}_{1}}(x, y) \land \varphi_{\mathsf{R}_{2}}(x, y) \land \varphi_{\mathsf{S}}(x, y) \land \varphi_{\mathsf{U}}(y) \right) \right) \\ \varphi_{\mathsf{R}_{i}}(x, y) &:= \mathsf{R}_{i}(\underline{y}, x) \land \neg \exists x' \left(\mathsf{R}_{i}(\underline{y}, x') \land x' \neq x \right), 1 \leq i \leq 2 \\ \varphi_{\mathsf{S}}(x, y) &:= \exists z \left(\mathsf{S}(\underline{y}, z) \right) \land \neg \exists z \left(\mathsf{S}(\underline{y}, z) \land \neg \exists r \left(\mathsf{T}(\underline{x}, z, r) \right) \right) \\ \varphi_{\mathsf{U}}(y) &:= \exists u \left(\mathsf{U}(\underline{y}, u) \right) \land \neg \exists u \left(\mathsf{U}(\underline{y}, u) \land \neg \exists w \left(\mathsf{W}(\underline{u}, w) \right) \right) \end{split}$$

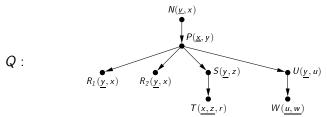
In SQL, we get 4 embedded NOT EXISTS...



We construct a first-order formula φ_N such that for every database: φ_N is true in the database $\iff Q$ is true in every repair.

$$\begin{split} \varphi_{\mathsf{N}} &:= \exists v \left(\exists x \left(\mathsf{N}(\underline{v}, x) \right) \land \neg \exists x \left(\mathsf{N}(\underline{v}, x) \land \neg \varphi_{\mathsf{P}}(x) \right) \right) \\ \varphi_{\mathsf{P}}(x) &:= \exists y \left(\mathsf{P}(\underline{x}, y) \right) \\ \land \neg \exists y \left(\mathsf{P}(\underline{x}, y) \land \neg (\varphi_{\mathsf{R}_{1}}(x, y) \land \varphi_{\mathsf{R}_{2}}(x, y) \land \varphi_{\mathsf{S}}(x, y) \land \varphi_{\mathsf{U}}(y) \right) \right) \\ \varphi_{\mathsf{R}_{i}}(x, y) &:= \mathsf{R}_{i}(\underline{y}, x) \land \neg \exists x' \left(\mathsf{R}_{i}(\underline{y}, x') \land x' \neq x \right), 1 \leq i \leq 2 \\ \varphi_{\mathsf{S}}(x, y) &:= \exists z \left(\mathsf{S}(\underline{y}, z) \right) \land \neg \exists z \left(\mathsf{S}(\underline{y}, z) \land \neg \exists r \left(\mathsf{T}(\underline{x}, z, r) \right) \right) \\ \varphi_{\mathsf{U}}(y) &:= \exists u \left(\mathsf{U}(\underline{y}, u) \right) \land \neg \exists u \left(\mathsf{U}(\underline{y}, u) \land \neg \exists w \left(\mathsf{W}(\underline{u}, \underline{w}) \right) \right) \end{split}$$

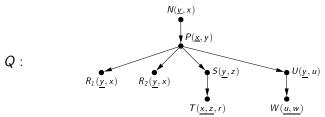
In SQL, we get 4 embedded NOT EXISTS..



We construct a first-order formula φ_N such that for every database: φ_N is true in the database $\iff Q$ is true in every repair.

$$\begin{split} \varphi_{\mathsf{N}} &:= \exists v \left(\exists x \left(N(\underline{v}, x) \right) \land \neg \exists x \left(N(\underline{v}, x) \land \neg \varphi_{\mathsf{P}}(x) \right) \right) \\ \varphi_{\mathsf{P}}(x) &:= \exists y \left(P(\underline{x}, y) \right) \\ \land \neg \exists y \left(P(\underline{x}, y) \land \neg (\varphi_{\mathsf{R}_{1}}(x, y) \land \varphi_{\mathsf{R}_{2}}(x, y) \land \varphi_{\mathsf{S}}(x, y) \land \varphi_{\mathsf{U}}(y) \right) \right) \\ \varphi_{\mathsf{R}_{i}}(x, y) &:= \mathsf{R}_{i}(\underline{y}, x) \land \neg \exists x' \left(\mathsf{R}_{i}(\underline{y}, x') \land x' \neq x \right), 1 \leq i \leq 2 \\ \varphi_{\mathsf{S}}(x, y) &:= \exists z \left(\mathsf{S}(\underline{y}, z) \right) \land \neg \exists z \left(\mathsf{S}(\underline{y}, z) \land \neg \exists r \left(T(\underline{x}, z, r) \right) \right) \\ \varphi_{\mathsf{U}}(y) &:= \exists u \left(U(\underline{y}, u) \right) \land \neg \exists u \left(U(\underline{y}, u) \land \neg \exists w \left(W(\underline{u}, w) \right) \right) \end{split}$$

In SQL, we get 4 embedded NOT EXISTS.



We construct a first-order formula φ_N such that for every database: φ_N is true in the database $\iff Q$ is true in every repair.

$$\begin{split} \varphi_{\mathsf{N}} &:= \exists v \left(\exists x \left(N(\underline{v}, x) \right) \land \neg \exists x \left(N(\underline{v}, x) \land \neg \varphi_{\mathsf{P}}(x) \right) \right) \\ \varphi_{\mathsf{P}}(x) &:= \exists y \left(\mathsf{P}(\underline{x}, y) \right) \\ \land \neg \exists y \left(\mathsf{P}(\underline{x}, y) \land \neg (\varphi_{\mathsf{R}_{1}}(x, y) \land \varphi_{\mathsf{R}_{2}}(x, y) \land \varphi_{\mathsf{S}}(x, y) \land \varphi_{\mathsf{U}}(y) \right) \right) \\ \varphi_{\mathsf{R}_{i}}(x, y) &:= \mathsf{R}_{i}(\underline{y}, x) \land \neg \exists x' \left(\mathsf{R}_{i}(\underline{y}, x') \land x' \neq x \right), 1 \leq i \leq 2 \\ \varphi_{\mathsf{S}}(x, y) &:= \exists z \left(\mathsf{S}(\underline{y}, z) \right) \land \neg \exists z \left(\mathsf{S}(\underline{y}, z) \land \neg \exists r \left(\mathsf{T}(\underline{x}, z, r) \right) \right) \\ \varphi_{\mathsf{U}}(y) &:= \exists u \left(U(\underline{y}, u) \right) \land \neg \exists u \left(U(\underline{y}, u) \land \neg \exists w \left(W(\underline{u}, w) \right) \right) \end{split}$$

In SQL, we get 4 embedded NOT EXISTS...

Observation Regarding Correctness

$$\begin{split} \varphi_{R_1}(x,y) &:= R_1(\underline{y},x) \land \neg \exists x' \left(R_1(\underline{y},x') \land x' \neq x \right) \\ \varphi_{R_2}(x,y) &:= R_2(\underline{y},x) \land \neg \exists x' \left(R_2(\underline{y},x') \land x' \neq x \right) \end{split}$$

In words,

- $\varphi_{R_1}(x, y)$: there is a singleton block containing $R_1(\underline{y}, x)$;
- $\varphi_{R_2}(x, y)$: there is a singleton block containing $R_2(\underline{y}, x)$.

That is, R_i -blocks of size \geq 2 can be ignored. For example,

To construct a repair that falsifies the query, pick $R_1(\underline{a}, c_i)$ and $R_2(\underline{a}, c_j)$ such that $c_i \neq c_j$.

Observation Regarding Correctness

$$\begin{split} \varphi_{R_1}(x,y) &:= R_1(\underline{y},x) \land \neg \exists x' \left(R_1(\underline{y},x') \land x' \neq x \right) \\ \varphi_{R_2}(x,y) &:= R_2(\underline{y},x) \land \neg \exists x' \left(R_2(\underline{y},x') \land x' \neq x \right) \end{split}$$

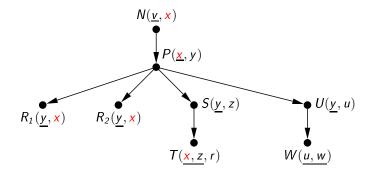
In words,

φ_{R1}(x, y): there is a singleton block containing R₁(<u>y</u>, x);
 φ_{R2}(x, y): there is a singleton block containing R₂(y, x).

That is, R_i -blocks of size ≥ 2 can be ignored. For example,

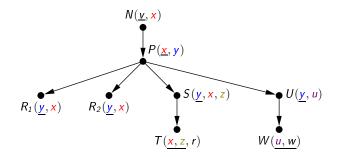
To construct a repair that falsifies the query, pick $R_1(\underline{a}, c_i)$ and $R_2(\underline{a}, c_j)$ such that $c_i \neq c_j$.

Attack Graph \neq Join Tree



The subgraph induced by atoms that contain x is not connected.

Attack Graph that Is a Join Tree

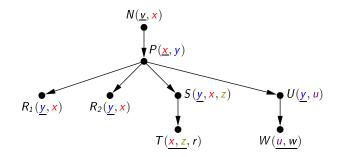


Moreover, every internal node V has zero indegree in the attack graph of the subquery rooted at V ($V \in \{P, S, U\}$). Such a join tree is called a Pair-Pruning Join Tree (PPJT). Yannakakis' algorithm extends to the inconsistent setting:

Theorem ([Fan et al., 2023])

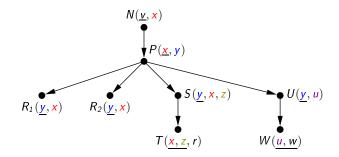
If Q has a PPJT, then CERTAINTY(Q) is in LIN (i.e., problems solvable in linear time).

Attack Graph that Is a Join Tree



Moreover, every internal node V has zero indegree in the attack graph of the subquery rooted at V ($V \in \{P, S, U\}$). Such a join tree is called a Pair-Pruning Join Tree (PPJT). Yannakakis' algorithm extends to the inconsistent setting: Theorem ([Fan et al., 2023]) If Q has a PPJT, then CERTAINTY(Q) is in LIN (*i.e.*, problems solvable in linear time)

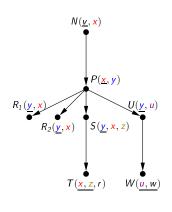
Attack Graph that Is a Join Tree



Moreover, every internal node V has zero indegree in the attack graph of the subquery rooted at V ($V \in \{P, S, U\}$). Such a join tree is called a Pair-Pruning Join Tree (PPJT). Yannakakis' algorithm extends to the inconsistent setting:

Theorem ([Fan et al., 2023])

If Q has a PPJT, then CERTAINTY(Q) is in LIN (i.e., problems solvable in linear time).



 $T^{\text{join}}(x, z) \leftarrow T(\underline{x, z}, r)$ $W^{\text{join}}(u) \leftarrow W(\underline{u, w})$

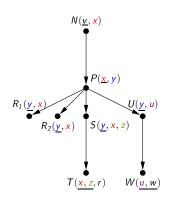
 $\begin{aligned} &Answer(\text{yes}) \leftarrow N(\underline{v}, x) \land \neg N^{\text{fadingkey}}(v) \\ &N^{\text{fadingkey}}(v) \leftarrow N(\underline{v}, x) \land \neg P^{\text{join}}(x) \end{aligned}$

$$\begin{split} & \mathcal{P}^{\mathsf{join}}(x) \leftarrow \mathcal{P}(\underline{x}, y) \land \neg \mathcal{P}^{\mathsf{fadingkey}}(x) \\ & \mathcal{P}^{\mathsf{fadingkey}}(x) \leftarrow \mathcal{P}(\underline{x}, y) \land \neg \mathcal{U}^{\mathsf{join}}(y) \\ & \mathcal{P}^{\mathsf{fadingkey}}(x) \leftarrow \mathcal{P}(\underline{x}, y) \land \neg S^{\mathsf{join}}(x, y) \\ & \mathcal{P}^{\mathsf{fadingkey}}(x) \leftarrow \mathcal{P}(\underline{x}, y) \land \neg R_{i}^{\mathsf{join}}(x, y) \end{split}$$

 $egin{aligned} & U^{\mathsf{join}}(y) \leftarrow U(\underline{y},u) \wedge
eg U^{\mathsf{fadingkey}}(y) \ \leftarrow U(\underline{y},u) \wedge
eg W^{\mathsf{join}}(u) \end{aligned}$

$$\begin{split} S^{\mathsf{join}}(x,y) &\leftarrow S(\underline{y},x,z) \land \neg S^{\mathsf{fadingkey}}(y) \\ S^{\mathsf{fadingkey}}(y) &\leftarrow S(\underline{y},x,z) \land S(\underline{y},x',z) \land x \neq x' \\ S^{\mathsf{fadingkey}}(y) &\leftarrow S(y,x,z) \land \neg T^{\mathsf{join}}(x,z) \end{split}$$

 $\begin{aligned} R_i^{\text{join}}(x, y) &\leftarrow R_i(\underline{y}, x) \land \neg R_i^{\text{fadingkey}}(y) \\ R_i^{\text{fadingkey}}(y) &\leftarrow R_i(\underline{y}, x) \land R_i(\underline{y}, x') \land x \neq x' \\ (1 \leq i \leq 2) \end{aligned}$



 $T^{\text{join}}(x, z) \leftarrow T(\underline{x, z}, r)$ $W^{\text{join}}(u) \leftarrow W(\underline{u, w})$

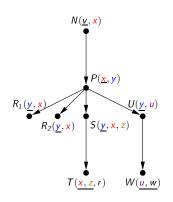
 $\begin{aligned} &Answer(\text{yes}) \leftarrow N(\underline{v}, x) \land \neg N^{\text{fadingkey}}(v) \\ &N^{\text{fadingkey}}(v) \leftarrow N(\underline{v}, x) \land \neg P^{\text{join}}(x) \end{aligned}$

 $P^{\text{join}}(x) \leftarrow P(\underline{x}, y) \land \neg P^{\text{fadingkey}}(x)$ $P^{\text{fadingkey}}(x) \leftarrow P(\underline{x}, y) \land \neg U^{\text{join}}(y)$ $P^{\text{fadingkey}}(x) \leftarrow P(\underline{x}, y) \land \neg S^{\text{join}}(x, y)$ $P^{\text{fadingkey}}(x) \leftarrow P(\underline{x}, y) \land \neg R_{i}^{\text{join}}(x, y)$

 $egin{aligned} & U^{\mathsf{join}}(y) \leftarrow U(\underline{y},u) \wedge
eg U^{\mathsf{fadingkey}}(y) \ & U(\underline{y},u) \wedge
eg W^{\mathsf{join}}(u) \end{aligned}$

 $S^{\text{join}}(x, y) \leftarrow S(\underline{y}, x, z) \land \neg S^{\text{fadingkey}}(y)$ $S^{\text{fadingkey}}(y) \leftarrow S(\underline{y}, x, z) \land S(\underline{y}, x', z) \land x \neq x'$ $S^{\text{fadingkey}}(y) \leftarrow S(y, x, z) \land \neg T^{\text{join}}(x, z)$

$$\begin{split} R_{i}^{\text{join}}(x, y) &\leftarrow R_{i}(\underline{y}, x) \land \neg R_{i}^{\text{fadingkey}}(y) \\ R_{i}^{\text{fadingkey}}(y) &\leftarrow R_{i}(\underline{y}, x) \land R_{i}(\underline{y}, x') \land x \neq x' \\ (1 \leq i \leq 2) \end{split}$$



 $T^{\text{join}}(x, z) \leftarrow T(\underline{x}, z, r)$ $W^{\text{join}}(u) \leftarrow W(u, w)$

$$S^{\text{fadingkey}}(y) \leftarrow S(\underline{y}, x, z) \land \neg T^{\text{join}}(x, z)$$

$$R_{i}^{\text{join}}(x, y) \leftarrow R_{i}(\underline{y}, x) \land \neg R_{i}^{\text{fadingkey}}(y)$$

$$R_{i}^{\text{fadingkey}}(y) \leftarrow R_{i}(\underline{y}, x) \land R_{i}(\underline{y}, x') \land x \neq x'$$

$$(1 \leq i \leq 2)$$

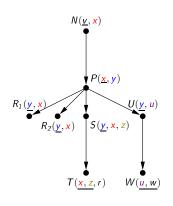
$$24/38$$

 $\begin{aligned} &Answer(\text{yes}) \leftarrow N(\underline{v}, x) \land \neg N^{\text{fadingkey}}(v) \\ &N^{\text{fadingkey}}(v) \leftarrow N(\underline{v}, x) \land \neg P^{\text{join}}(x) \end{aligned}$

 $\begin{aligned} & \mathcal{P}^{\mathsf{join}}(x) \leftarrow \mathcal{P}(\underline{x}, y) \land \neg \mathcal{P}^{\mathsf{fadingkey}}(x) \\ & \mathcal{P}^{\mathsf{fadingkey}}(x) \leftarrow \mathcal{P}(\underline{x}, y) \land \neg \mathcal{U}^{\mathsf{join}}(y) \\ & \mathcal{P}^{\mathsf{fadingkey}}(x) \leftarrow \mathcal{P}(\underline{x}, y) \land \neg S^{\mathsf{join}}(x, y) \\ & \mathcal{P}^{\mathsf{fadingkey}}(x) \leftarrow \mathcal{P}(\underline{x}, y) \land \neg R_{i}^{\mathsf{join}}(x, y) \end{aligned}$

 $U^{\text{join}}(y) \leftarrow U(\underline{y}, u) \land \neg U^{\text{fadingkey}}(y)$ $U^{\text{fadingkey}}(y) \leftarrow U(\underline{y}, u) \land \neg W^{\text{join}}(u)$

$$\begin{split} S^{\text{join}}(x,y) &\leftarrow S(\underline{y},x,z) \land \neg S^{\text{fadingkey}}(y) \\ S^{\text{fadingkey}}(y) &\leftarrow S(\underline{y},x,z) \land S(\underline{y},x',z) \land x \neq x' \\ S^{\text{fadingkey}}(y) &\leftarrow S(\underline{y},x,z) \land \neg T^{\text{join}}(x,z) \end{split}$$



 $T^{\text{join}}(x,z) \leftarrow T(x,z,r)$ $W^{\text{join}}(u) \leftarrow W(u, w)$

$$S^{\text{fadingkey}}(\mathbf{y}) \leftarrow S(\underline{\mathbf{y}}, \mathbf{x}, \mathbf{z}) \land S^{\text{fadingkey}}(\mathbf{y})$$

$$S^{\text{fadingkey}}(\mathbf{y}) \leftarrow S(\underline{\mathbf{y}}, \mathbf{x}, \mathbf{z}) \land S(\underline{\mathbf{y}}, \mathbf{x'}, \mathbf{z}) \land \mathbf{x} \neq \mathbf{x'}$$

$$S^{\text{fadingkey}}(\mathbf{y}) \leftarrow S(\underline{\mathbf{y}}, \mathbf{x}, \mathbf{z}) \land \neg T^{\text{join}}(\mathbf{x}, \mathbf{z})$$

$$R^{\text{join}}_{i}(\mathbf{x}, \mathbf{y}) \leftarrow R_{i}(\underline{\mathbf{y}}, \mathbf{x}) \land \neg R^{\text{fadingkey}}_{i}(\mathbf{y})$$

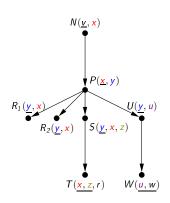
$$R^{\text{fadingkey}}_{i}(\mathbf{y}) \leftarrow R_{i}(\underline{\mathbf{y}}, \mathbf{x}) \land R_{i}(\underline{\mathbf{y}}, \mathbf{x'}) \land \mathbf{x} \neq \mathbf{x'}$$

$$(1 \leq i \leq 2)$$

$$24/38$$

 $U^{\text{join}}(y) \leftarrow U(y, u) \land \neg U^{\text{fadingkey}}(y)$ $U^{\text{fadingkey}}(y) \leftarrow U(y, u) \land \neg W^{\text{join}}(u)$

 $S_{join}(x,y) \leftarrow S(y,x,z) \land \neg S_{fadingkey}(y)$



 $T^{\text{join}}(x, z) \leftarrow T(\underline{x}, \underline{z}, r)$ $W^{\text{join}}(u) \leftarrow W(u, w)$

$$\begin{split} S^{\text{join}}(x, y) &\leftarrow S(\underline{y}, x, z) \land \neg S^{\text{fadingkey}}(y) \\ S^{\text{fadingkey}}(y) &\leftarrow S(\underline{y}, x, z) \land S(\underline{y}, x', z) \land x \neq x' \\ S^{\text{fadingkey}}(y) &\leftarrow S(\underline{y}, x, z) \land \neg T^{\text{join}}(x, z) \\ R^{\text{join}}_{i}(x, y) &\leftarrow R_{i}(\underline{y}, x) \land \neg R^{\text{fadingkey}}_{i}(y) \\ R^{\text{fadingkey}}_{i}(y) &\leftarrow R_{i}(\underline{y}, x) \land R_{i}(\underline{y}, x') \land x \neq x' \\ (1 \leq i \leq 2) \end{split}$$

 $\begin{aligned} &Answer(\text{yes}) \leftarrow N(\underline{v}, x) \land \neg N^{\text{fadingkey}}(v) \\ &N^{\text{fadingkey}}(v) \leftarrow N(\underline{v}, x) \land \neg P^{\text{join}}(x) \end{aligned}$

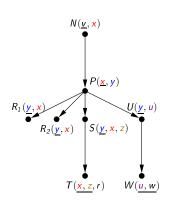
 $P^{\text{fadingkey}}(x) \leftarrow P(\underline{x}, y) \land \neg U^{\text{join}}(y)$ $P^{\text{fadingkey}}(x) \leftarrow P(\underline{x}, y) \land \neg S^{\text{join}}(x, y)$

 $P^{\text{fadingkey}}(\mathbf{x}) \leftarrow P(\mathbf{x}, \mathbf{y}) \land \neg R_i^{\text{join}}(\mathbf{x}, \mathbf{y})$

 $U^{\text{fadingkey}}(y) \leftarrow U(y, u) \land \neg W^{\text{join}}(u)$

 $P^{\text{join}}(x) \leftarrow P(\underline{x}, y) \land \neg P^{\text{fadingkey}}(x)$

 $U^{\text{join}}(y) \leftarrow U(y, u) \land \neg U^{\text{fadingkey}}(y)$



 $T^{\text{join}}(x,z) \leftarrow T(x,z,r)$ $W^{\text{join}}(u) \leftarrow W(u, w)$

$$P^{\text{fadingkey}}(x) \leftarrow P(\underline{x}, y) \land \neg S^{\text{join}}(x, y)$$

$$P^{\text{fadingkey}}(x) \leftarrow P(\underline{x}, y) \land \neg S^{\text{join}}(x, y)$$

$$P^{\text{fadingkey}}(x) \leftarrow P(\underline{x}, y) \land \neg R^{\text{join}}_{i}(x, y)$$

$$U^{\text{join}}(y) \leftarrow U(\underline{y}, u) \land \neg U^{\text{fadingkey}}(y)$$

$$U^{\text{fadingkey}}(y) \leftarrow U(\underline{y}, u) \land \neg W^{\text{join}}(u)$$

$$S^{\text{join}}(x, y) \leftarrow S(\underline{y}, x, z) \land \neg S^{\text{fadingkey}}(y)$$

$$S^{\text{fadingkey}}(y) \leftarrow S(\underline{y}, x, z) \land S(\underline{y}, x', z) \land x \neq x'$$

$$S^{\text{fadingkey}}(y) \leftarrow S(\underline{y}, x, z) \land \neg R^{\text{fadingkey}}_{i}(y)$$

$$R^{\text{fadingkey}}_{i}(y) \leftarrow R_{i}(\underline{y}, x) \land R_{i}(\underline{y}, x') \land x \neq x'$$

$$(1 \leq i \leq 2)$$

$$24/38$$

$$\begin{split} &Answer(\text{yes}) \leftarrow \textit{N}(\underline{v}, x) \land \neg \textit{N}^{\text{fadingkey}}(v) \\ &N^{\text{fadingkey}}(v) \leftarrow \textit{N}(\underline{v}, x) \land \neg \textit{P}^{\text{join}}(x) \end{split}$$

$$\begin{split} & \mathcal{P}^{\text{join}}(x) \leftarrow \mathcal{P}(\underline{x}, y) \land \neg \mathcal{P}^{\text{fadingkey}}(x) \\ & \mathcal{P}^{\text{fadingkey}}(x) \leftarrow \mathcal{P}(\underline{x}, y) \land \neg \mathcal{U}^{\text{join}}(y) \\ & \mathcal{P}^{\text{fadingkey}}(x) \leftarrow \mathcal{P}(\underline{x}, y) \land \neg \mathcal{S}^{\text{join}}(x, y) \\ & \mathcal{P}^{\text{fadingkey}}(x) \leftarrow \mathcal{P}(\underline{x}, y) \land \neg \mathcal{R}^{\text{join}}_{i}(x, y) \end{split}$$

LinCQA

- LinCQA is a system that takes as input any query with a PPJT and outputs rewritings in both SQL and non-recursive Datalog with negation.
- https://github.com/xiatingouyang/LinCQA/
- See [Fan et al., 2023] for experiments.

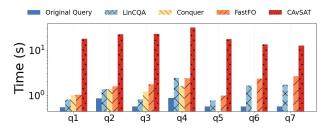


Table of Contents

Motivation

Complexity of CERTAINTY(Q)

CERTAINTY(Q) in Linear Time (and in FO)

Alternative Semantics

Range Consistent Query Answering Counting Variant of CERTAINTY(Q)

Concluding Remarks

Table of Contents

Motivation

Complexity of CERTAINTY(Q)

CERTAINTY(Q) in Linear Time (and in FO)

Alternative Semantics

Range Consistent Query Answering Counting Variant of CERTAINTY(Q)

Concluding Remarks

Range Consistent Query Answering [Arenas et al., 2001]

For queries returning **numbers** instead of Booleans. For ease of presentation, all queries return a single number.

Get the sum of ages of all actresses in Mr. & Mrs. Smith:

 $SUM(z) \leftarrow MOVIES(Mr. \& Mrs. Smith, x), ACTORS(\underline{x}, F, z).$

- The lowest answer across all repairs is 48 + 52 = 100;
- the greatest answer across all repairs is 48 + 59 + 53 = 160;
- ▶ the interval [100, 160] is called the range consistent answer.

Range Consistent Query Answering [Arenas et al., 2001]

For queries returning **numbers** instead of Booleans. For ease of presentation, all queries return a single number.

MOVIES	ACTORS			
Title Actor		Name	Gender	Age
	_	Jolie	F	48
Mr. & Mrs. Smith Jolie Mr. & Mrs. Smith Pitt	-	Pitt	F	59
L	-	Pitt	Μ	60
Mr. & Mrs. Smith Reeves	-	Reeves		52
		Reeves	F	_ 53_

Get the sum of ages of all actresses in Mr. & Mrs. Smith:

 $SUM(z) \leftarrow MOVIES(Mr. \& Mrs. Smith, x), ACTORS(x, F, z).$

- The lowest answer across all repairs is 48 + 52 = 100;
- the greatest answer across all repairs is 48 + 59 + 53 = 160;
- ▶ the interval [100, 160] is called the range consistent answer.

Range Consistent Query Answering [Arenas et al., 2001]

For queries returning **numbers** instead of Booleans. For ease of presentation, all queries return a single number.

MOVIES	ACTORS			
	Name	Gender	Age	
	Jolie	F	48	
	Pitt	- F	59	
	Pitt	Μ	60	
Mr. & Mrs. Smith Reeves	Reeves		52	
	Reeves	F	53	

Get the sum of ages of all actresses in Mr. & Mrs. Smith:

 $SUM(z) \leftarrow MOVIES(Mr. \& Mrs. Smith, x), ACTORS(\underline{x}, F, z).$

- The lowest answer across all repairs is 48 + 52 = 100;
- the greatest answer across all repairs is 48 + 59 + 53 = 160;
- ▶ the interval [100, 160] is called the range consistent answer.

Formal Setting

Numerical terms f() expressible in the (safe) rule format

$$\operatorname{AGG}(r) \leftarrow R_1(\underline{\vec{x}_1}, \vec{y}_1) \wedge R_2(\underline{\vec{x}_2}, \vec{y}_2) \wedge \cdots \wedge R_n(\underline{\vec{x}_n}, \vec{y}_n), \quad (2)$$

where r is either a numerical variable or a constant, and AGG is an aggregate operator (e.g., MAX, MIN, SUM, COUNT, AVG).

Given a database instance, let f⁺() and f⁻() be, respectively, the greatest and smallest values of f() across all repairs.

Aggregate logic = first-order logic + aggregate operators.

When can $f^+()$ and $f^-()$ be expressed in aggregate logic?

Not investigated since [Fuxman, 2007].

It is easily shown that f⁺() and f⁻() are not expressible in aggregate logic if the attack graph of the body of (2) has a cycle.

Does the converse hold?

Formal Setting

Numerical terms f() expressible in the (safe) rule format

$$\operatorname{AGG}(r) \leftarrow R_1(\underline{\vec{x}_1}, \vec{y}_1) \wedge R_2(\underline{\vec{x}_2}, \vec{y}_2) \wedge \cdots \wedge R_n(\underline{\vec{x}_n}, \vec{y}_n), \quad (2)$$

where r is either a numerical variable or a constant, and AGG is an aggregate operator (e.g., MAX, MIN, SUM, COUNT, AVG).

- Given a database instance, let f⁺() and f⁻() be, respectively, the greatest and smallest values of f() across all repairs.
- ► Aggregate logic = first-order logic + aggregate operators.

When can $f^+()$ and $f^-()$ be expressed in aggregate logic?

Not investigated since [Fuxman, 2007].

- It is easily shown that f⁺() and f⁻() are not expressible in aggregate logic if the attack graph of the body of (2) has a cycle.
- Does the converse hold?

Formal Setting

Numerical terms f() expressible in the (safe) rule format

$$\operatorname{AGG}(r) \leftarrow R_1(\underline{\vec{x}_1}, \vec{y}_1) \wedge R_2(\underline{\vec{x}_2}, \vec{y}_2) \wedge \cdots \wedge R_n(\underline{\vec{x}_n}, \vec{y}_n), \quad (2)$$

where r is either a numerical variable or a constant, and AGG is an aggregate operator (e.g., MAX, MIN, SUM, COUNT, AVG).

- Given a database instance, let f⁺() and f⁻() be, respectively, the greatest and smallest values of f() across all repairs.
- ► Aggregate logic = first-order logic + aggregate operators.
 - When can $f^+()$ and $f^-()$ be expressed in aggregate logic?
 - Not investigated since [Fuxman, 2007].
 - It is easily shown that f⁺() and f⁻() are not expressible in aggregate logic if the attack graph of the body of (2) has a cycle.
 - Does the converse hold?

Rewriting Example

 $SUM(z) \leftarrow MOVIES(Mr. \& Mrs. Smith, x), ACTORS(\underline{x}, F, z).$

Upper bound rewriting:

 $\begin{aligned} \mathsf{U}(x, \mathtt{MAX}(z)) &\leftarrow \mathsf{MOVIES}(\underline{\mathsf{Mr. \& Mrs. Smith}, x}), \mathsf{ACTORS}(\underline{x}, \mathsf{F}, z) \\ \mathsf{UB}(\mathtt{SUM}(z)) &\leftarrow \mathsf{U}(x, z) \end{aligned}$

Lower bound rewriting:

$$\begin{split} & \mathsf{POSSIBLE}_{\mathsf{M}}(x) \leftarrow \mathsf{ACTORS}(\underline{x},\mathsf{M},z) \\ & \mathsf{CERTAIN}_{\mathsf{F}}(x,z) \leftarrow \mathsf{ACTORS}(\underline{x},\mathsf{F},z), \neg \mathsf{POSSIBLE}_{\mathsf{M}}(x) \\ & \mathsf{L}(x,\mathtt{MIN}(z)) \leftarrow \mathsf{MOVIES}(\underline{\mathsf{Mr. \& Mrs. Smith},x}), \mathsf{CERTAIN}_{\mathsf{F}}(\underline{x},z) \\ & \mathsf{LB}(\mathtt{SUM}(z)) \leftarrow \mathsf{L}(x,z) \end{split}$$

Table of Contents

Motivation

Complexity of CERTAINTY(Q)

CERTAINTY(Q) in Linear Time (and in FO)

Alternative Semantics

Range Consistent Query Answering Counting Variant of CERTAINTY(Q)

Concluding Remarks

Counting

Given a Boolean query Q, define the following counting problem:

Problem $\problem \problem \p$

Input: A database instance that may violate primary-key constraints.

Question: How many repairs of satisfy Q?

Complexity Classification Task

Input: A self-join-free Boolean conjunctive query Q.

Task: Determine lower and upper complexity bounds on the complexity of #CERTAINTY(q), in terms of common complexity classes like FP and #P.

 Solved in [Maslowski and W., 2013] and generalized to FDs in [Calautti et al., 2022].

Same problem as query answering in block-independent disjoint (BID) probabilistic databases under the restriction that in every block **b**, every tuple has probability ¹/_{|b|}.

Counting

Given a Boolean query Q, define the following counting problem:

Problem $\problem \problem \p$

Input: A database instance that may violate primary-key constraints.

Question: How many repairs of satisfy Q?

Complexity Classification Task

Input: A self-join-free Boolean conjunctive query Q.

- Task: Determine lower and upper complexity bounds on the complexity of $\sharp CERTAINTY(q)$, in terms of common complexity classes like FP and $\sharp P$.
- Solved in [Maslowski and W., 2013] and generalized to FDs in [Calautti et al., 2022].

Same problem as query answering in block-independent disjoint (BID) probabilistic databases under the restriction that in every block **b**, every tuple has probability ¹/_{|b|}.

Counting

Given a Boolean query Q, define the following counting problem:

Problem $\problem \problem \p$

Input: A database instance that may violate primary-key constraints.

Question: How many repairs of satisfy Q?

Complexity Classification Task

Input: A self-join-free Boolean conjunctive query Q.

- Task: Determine lower and upper complexity bounds on the complexity of $\sharp CERTAINTY(q)$, in terms of common complexity classes like FP and $\sharp P$.
- Solved in [Maslowski and W., 2013] and generalized to FDs in [Calautti et al., 2022].
- Same problem as query answering in block-independent disjoint (BID) probabilistic databases under the restriction that in every block **b**, every tuple has probability ¹/_{|**b**|}.

BID Databases

Every input to CERTAINTY(Q) is a block-independent disjoint database without probabilities (or with uniform probabilities).

 $^{
m IP}$ Inconsistency is not only a burden, but also a chance. 1

Researchers:					
	Name	Affiliation	P		
t_1^{\perp}	Fred	U. Washington	$p_1^1 = 0.3$		
t_{1}^{2}		U. Wisconsin	$p_1^2 = 0.2$		
$\begin{array}{c}t_{1}^{1}\\t_{1}^{2}\\t_{1}^{3}\\t_{1}^{3}\\t_{2}^{1}\end{array}$		Y! Research	$p_1^3 = 0.5$		
t_2^1	Sue	U. Washington	$p_2^1 = 1.0$		
t_3^1	John	U. Wisconsin	$p_3^1 = 0.7$		
t_3^2		U. Washington	$p_3^2 = 0.3$		
t_4^1	Frank	Y! Research	$p_4^1 = 0.9$		
t_{3}^{1} t_{3}^{2} t_{4}^{1} t_{4}^{2}		M. Research	$p_4^2 = 0.1$		

¹Inspired by [Kern-Isberner and Lukasiewicz, 2017]. The image is from [Dalvi et al., 2009].

Table of Contents

Motivation

Complexity of CERTAINTY(Q)

CERTAINTY(Q) in Linear Time (and in FO)

Alternative Semantics

Concluding Remarks

Concluding Remarks

. . .

Consistent Query Answering is an active research area since [Arenas et al., 1999]:

- Database repairing w.r.t. different classes of constraints
- Database repairing and data exchange
- Database repairing and approximations
- Database repairing and preferences
- Database repairing and implementations
- Database repairing and database management systems
- Consistent query answering for queries with negation
- Consistent query answering in description logics
- Consistent query answering over graph databases

Thanks!

FYI, Brad Pitt celebrated his 60th birthday on December 18, 2023.

References I

Arenas, M., Bertossi, L. E., and Chomicki, J. (1999).

Consistent query answers in inconsistent databases. In *PODS*, pages 68–79. ACM Press.

Arenas, M., Bertossi, L. E., and Chomicki, J. (2001).

Scalar aggregation in fd-inconsistent databases. In *ICDT*, volume 1973 of *Lecture Notes in Computer Science*, pages 39–53. Springer.

Calautti, M., Livshits, E., Pieris, A., and Schneider, M. (2022).

Counting database repairs entailing a query: The case of functional dependencies. In PODS, pages 403–412. ACM.

Chomicki, J. and Marcinkowski, J. (2005).

Minimal-change integrity maintenance using tuple deletions. Inf. Comput., 197(1-2):90–121.

Dalvi, N. N., Ré, C., and Suciu, D. (2009).

Probabilistic databases: diamonds in the dirt. Commun. ACM, 52(7):86–94.

Fan, Z., Koutris, P., Ouyang, X., and Wijsen, J. (2023).

LinCQA: Faster consistent query answering with linear time guarantees. *Proc. ACM Manag. Data*, 1(1):38:1–38:25.

Fontaine, G. (2015).

Why is it hard to obtain a dichotomy for consistent query answering? ACM Trans. Comput. Log., 16(1):7:1-7:24.

Fuxman, A. (2007).

Efficient query processing over inconsistent databases. PhD thesis, University of Toronto.

References II

Kern-Isberner, G. and Lukasiewicz, T. (2017).

Many facets of reasoning under uncertainty, inconsistency, vagueness, and preferences: A brief survey. KI, 31(1):9–13.

Koutris, P. and W., J. (2017).

Consistent query answering for self-join-free conjunctive queries under primary key constraints. ACM Trans. Database Syst., 42(2):9:1–9:45.

Maslowski, D. and W., J. (2013).

A dichotomy in the complexity of counting database repairs. J. Comput. Syst. Sci., 79(6):958–983.

A dichotomy in the complexity of consistent query answering for two atom queries with self-join. *CoRR*, abs/2309.12059.

W., J. (2010).

A remark on the complexity of consistent conjunctive query answering under primary key violations. Inf. Process. Lett., 110(21):950–955.