
1/38

Consistent Query Answering with Respect to
Primary Keys

[Some] Past Research and Future Challenges

Jef Wijsen

University of Mons

Dagstuhl Seminar 24111, March 11–15, 2024

2/38

Table of Contents

Motivation

Complexity of CERTAINTY(Q)

CERTAINTY(Q) in Linear Time (and in FO)

Alternative Semantics

Concluding Remarks

3/38

Table of Contents

Motivation

Complexity of CERTAINTY(Q)

CERTAINTY(Q) in Linear Time (and in FO)

Alternative Semantics

Concluding Remarks

4/38

Inconsistent Data

5/38

Inconsistent Databases

ACTORS Name Gender Age
Jolie F 48
Pitt M 59
Pitt M 60

Every actor has, at most, one gender and one age:
ACTORS PRIMARY KEY(Name).

Data cleaning takes time (and money). Can we already obtain
“reliable” information by querying the inconsistent database?

5/38

Inconsistent Databases

ACTORS Name Gender Age
Jolie F 48
Pitt M 59
Pitt M 60

Every actor has, at most, one gender and one age:
ACTORS PRIMARY KEY(Name).

Data cleaning takes time (and money). Can we already obtain
“reliable” information by querying the inconsistent database?

6/38

Querying Inconsistent Databases

For ease of presentation,
all queries return a
Boolean (true/false).

ACTORS Name Gender Age
Jolie F 48
Pitt M 59
Pitt M 60

▶ Is Pitt’s age 60?

∃y (ACTORS(Pitt, y , 60)) is “possibly false”.

▶ Is Pitt older than Jolie?

∃y∃z∃v∃w
(

ACTORS(Pitt, y , z)∧
ACTORS(Jolie, v ,w) ∧ z > w

)
is “certainly true”.

A block is a maximal set of tuples of the same relation that agree
on their primary key (blocks are separated by dashed lines).
A repair (or possible world) is obtained by picking a single tuple from
each block.

With this notion, “certainly true” means “true in every repair”.

If 2 ages are stored for n actors, there are at least 2n repairs.

6/38

Querying Inconsistent Databases

For ease of presentation,
all queries return a
Boolean (true/false).

ACTORS Name Gender Age
Jolie F 48
Pitt M 59
Pitt M 60

▶ Is Pitt’s age 60?

∃y (ACTORS(Pitt, y , 60)) is “possibly false”.

▶ Is Pitt older than Jolie?

∃y∃z∃v∃w
(

ACTORS(Pitt, y , z)∧
ACTORS(Jolie, v ,w) ∧ z > w

)
is “certainly true”.

A block is a maximal set of tuples of the same relation that agree
on their primary key (blocks are separated by dashed lines).
A repair (or possible world) is obtained by picking a single tuple from
each block.

With this notion, “certainly true” means “true in every repair”.

If 2 ages are stored for n actors, there are at least 2n repairs.

7/38

Consistent Query Answering for Primary Keys

Given a Boolean query Q, define the following decision problem:

Problem CERTAINTY(Q)

Input: A database instance D that may
violate primary-key constraints.

Question: Is Q true in every repair of D?

Example

If Q60 = ∃y (ACTORS(Pitt, y , 60)), then the answer to
CERTAINTY(Q60) is “no” on our example database.

Remark
We assume that each relation name has a fixed primary key.
Primary-key positions will be underlined. Primary keys can thus be
derived from the query.

7/38

Consistent Query Answering for Primary Keys

Given a Boolean query Q, define the following decision problem:

Problem CERTAINTY(Q)

Input: A database instance D that may
violate primary-key constraints.

Question: Is Q true in every repair of D?

Example

If Q60 = ∃y (ACTORS(Pitt, y , 60)), then the answer to
CERTAINTY(Q60) is “no” on our example database.

Remark
We assume that each relation name has a fixed primary key.
Primary-key positions will be underlined. Primary keys can thus be
derived from the query.

8/38

Table of Contents

Motivation

Complexity of CERTAINTY(Q)

CERTAINTY(Q) in Linear Time (and in FO)

Alternative Semantics

Concluding Remarks

9/38

Solving CERTAINTY(Q)

Proposition

CERTAINTY(Q) is in coNP for first-order queries Q.

Proof.
A “‘no” certificate is a repair that falsifies Q.

CERTAINTY(Q60) is in FO, as the following are equivalent for
every database instance D:

1. Q is true in every repair of D;

2. D satisfies Q60 ∧ ¬∃y∃z (ACTORS(Pitt, y , z) ∧ (z ̸= 60)).

9/38

Solving CERTAINTY(Q)

Proposition

CERTAINTY(Q) is in coNP for first-order queries Q.

Proof.
A “‘no” certificate is a repair that falsifies Q.

CERTAINTY(Q60) is in FO, as the following are equivalent for
every database instance D:

1. Q is true in every repair of D;

2. D satisfies Q60 ∧ ¬∃y∃z (ACTORS(Pitt, y , z) ∧ (z ̸= 60)).

10/38

The Good, the Bad and the Ugly

Proposition

For Qgood = ∃y (ACTORS(Pitt, y , 60)), the decision problem
CERTAINTY(Qgood) is in FO.

Theorem ([W., 2010])

For Qbad = ∃x∃y
(
R(x , y) ∧ S(y , x)

)
, the decision problem

CERTAINTY(Qbad) is in P \ FO (later, it was proven L-complete).

Theorem ([Chomicki and Marcinkowski, 2005])

For Qugly = ∃x1∃x2∃z
(
ACTORS(x1,M, z) ∧ ACTORS(x2,F, z)

)
,

the decision problem CERTAINTY(Qugly) is coNP-complete.

10/38

The Good, the Bad and the Ugly

Proposition

For Qgood = ∃y (ACTORS(Pitt, y , 60)), the decision problem
CERTAINTY(Qgood) is in FO.

Theorem ([W., 2010])

For Qbad = ∃x∃y
(
R(x , y) ∧ S(y , x)

)
, the decision problem

CERTAINTY(Qbad) is in P \ FO (later, it was proven L-complete).

Theorem ([Chomicki and Marcinkowski, 2005])

For Qugly = ∃x1∃x2∃z
(
ACTORS(x1,M, z) ∧ ACTORS(x2,F, z)

)
,

the decision problem CERTAINTY(Qugly) is coNP-complete.

10/38

The Good, the Bad and the Ugly

Proposition

For Qgood = ∃y (ACTORS(Pitt, y , 60)), the decision problem
CERTAINTY(Qgood) is in FO.

Theorem ([W., 2010])

For Qbad = ∃x∃y
(
R(x , y) ∧ S(y , x)

)
, the decision problem

CERTAINTY(Qbad) is in P \ FO (later, it was proven L-complete).

Theorem ([Chomicki and Marcinkowski, 2005])

For Qugly = ∃x1∃x2∃z
(
ACTORS(x1,M, z) ∧ ACTORS(x2,F, z)

)
,

the decision problem CERTAINTY(Qugly) is coNP-complete.

10/38

The Good, the Bad and the Ugly

Proposition

For Qgood = ∃y (ACTORS(Pitt, y , 60)), the decision problem
CERTAINTY(Qgood) is in FO.

Theorem ([W., 2010])

For Qbad = ∃x∃y
(
R(x , y) ∧ S(y , x)

)
, the decision problem

CERTAINTY(Qbad) is in P \ FO (later, it was proven L-complete).

Theorem ([Chomicki and Marcinkowski, 2005])

For Qugly = ∃x1∃x2∃z
(
ACTORS(x1,M, z) ∧ ACTORS(x2,F, z)

)
,

the decision problem CERTAINTY(Qugly) is coNP-complete.

11/38

Research Agenda

▶ We aim to go beyond the task of determining
CERTAINTY(Q) for individual queries Q.

▶ For “reasonable” classes C of queries, write an algorithm for
the following problem:

Complexity Classification Task

Input: A query Q in the class C.
Task: The computational complexity of

CERTAINTY(Q), in terms of complexity classes
like FO, P, coNP-complete,. . .

11/38

Research Agenda

▶ We aim to go beyond the task of determining
CERTAINTY(Q) for individual queries Q.

▶ For “reasonable” classes C of queries, write an algorithm for
the following problem:

Complexity Classification Task

Input: A query Q in the class C.
Task: The computational complexity of

CERTAINTY(Q), in terms of complexity classes
like FO, P, coNP-complete,. . .

12/38

Which Query Classes Are “Reasonable”?

▶ The class of (Boolean) conjunctive queries (a.k.a.
Select-Project-Join queries):

∃u⃗
(
R1(x⃗1, y⃗1) ∧ R2(x⃗2, y⃗2) ∧ · · · ∧ Rn(x⃗n, y⃗n)

)
. (1)

▶ The class of disjunctions of conjunctive queries (a.k.a. UCQ
queries):

Q1 ∨ Q2 ∨ · · · ∨ Qm,

where each Qi is of the form (1).

12/38

Which Query Classes Are “Reasonable”?

▶ The class of (Boolean) conjunctive queries (a.k.a.
Select-Project-Join queries):

∃u⃗
(
R1(x⃗1, y⃗1) ∧ R2(x⃗2, y⃗2) ∧ · · · ∧ Rn(x⃗n, y⃗n)

)
. (1)

▶ The class of disjunctions of conjunctive queries (a.k.a. UCQ
queries):

Q1 ∨ Q2 ∨ · · · ∨ Qm,

where each Qi is of the form (1).

13/38

Which Complexity Classes?

14/38

Classifying CERTAINTY(Q) in P/coNP-complete is Hard

Conjecture

If Q is a disjunction of conjunctive queries, then CERTAINTY(Q)
is in P or coNP-complete.

Theorem ([Fontaine, 2015])

The above conjecture implies
Bulatov’s dichotomy theorem for
the conservative constraint
satisfaction problem (CSP).

14/38

Classifying CERTAINTY(Q) in P/coNP-complete is Hard

Conjecture

If Q is a disjunction of conjunctive queries, then CERTAINTY(Q)
is in P or coNP-complete.

Theorem ([Fontaine, 2015])

The above conjecture implies
Bulatov’s dichotomy theorem for
the conservative constraint
satisfaction problem (CSP).

14/38

Classifying CERTAINTY(Q) in P/coNP-complete is Hard

Conjecture

If Q is a disjunction of conjunctive queries, then CERTAINTY(Q)
is in P or coNP-complete.

Theorem ([Fontaine, 2015])

The above conjecture implies
Bulatov’s dichotomy theorem for
the conservative constraint
satisfaction problem (CSP).

15/38

Is it Easier for Conjunctive Queries?

Conjecture

If Q is of the form ∃u⃗
(
R1(x⃗1, y⃗1) ∧ · · · ∧ Rn(x⃗n, y⃗n)

)
, then

CERTAINTY(Q) is in P or coNP-complete.

Theorem ([Koutris and W., 2017])

The above conjecture holds under the assumption that Ri ̸= Rj

whenever i ̸= j .

Somewhat later, if was proven that for every self-join-free CQ Q,
CERTAINTY(Q) is either in FO, L-complete, or coNP-complete.

Theorem ([Padmanabha et al., 2023])

The above conjecture holds under the assumption that n = 2.

Theorem ([Koutris et al., 2021])

The above conjecture holds for queries of the form
∃x1 · · · ∃xn+1

(
R1(x1, x2) ∧ R2(x2, x3) ∧ · · · ∧ Rn(xn, xn+1)

)
.

15/38

Is it Easier for Conjunctive Queries?

Conjecture

If Q is of the form ∃u⃗
(
R1(x⃗1, y⃗1) ∧ · · · ∧ Rn(x⃗n, y⃗n)

)
, then

CERTAINTY(Q) is in P or coNP-complete.

Theorem ([Koutris and W., 2017])

The above conjecture holds under the assumption that Ri ̸= Rj

whenever i ̸= j .

Somewhat later, if was proven that for every self-join-free CQ Q,
CERTAINTY(Q) is either in FO, L-complete, or coNP-complete.

Theorem ([Padmanabha et al., 2023])

The above conjecture holds under the assumption that n = 2.

Theorem ([Koutris et al., 2021])

The above conjecture holds for queries of the form
∃x1 · · · ∃xn+1

(
R1(x1, x2) ∧ R2(x2, x3) ∧ · · · ∧ Rn(xn, xn+1)

)
.

15/38

Is it Easier for Conjunctive Queries?

Conjecture

If Q is of the form ∃u⃗
(
R1(x⃗1, y⃗1) ∧ · · · ∧ Rn(x⃗n, y⃗n)

)
, then

CERTAINTY(Q) is in P or coNP-complete.

Theorem ([Koutris and W., 2017])

The above conjecture holds under the assumption that Ri ̸= Rj

whenever i ̸= j .

Somewhat later, if was proven that for every self-join-free CQ Q,
CERTAINTY(Q) is either in FO, L-complete, or coNP-complete.

Theorem ([Padmanabha et al., 2023])

The above conjecture holds under the assumption that n = 2.

Theorem ([Koutris et al., 2021])

The above conjecture holds for queries of the form
∃x1 · · · ∃xn+1

(
R1(x1, x2) ∧ R2(x2, x3) ∧ · · · ∧ Rn(xn, xn+1)

)
.

15/38

Is it Easier for Conjunctive Queries?

Conjecture

If Q is of the form ∃u⃗
(
R1(x⃗1, y⃗1) ∧ · · · ∧ Rn(x⃗n, y⃗n)

)
, then

CERTAINTY(Q) is in P or coNP-complete.

Theorem ([Koutris and W., 2017])

The above conjecture holds under the assumption that Ri ̸= Rj

whenever i ̸= j .

Somewhat later, if was proven that for every self-join-free CQ Q,
CERTAINTY(Q) is either in FO, L-complete, or coNP-complete.

Theorem ([Padmanabha et al., 2023])

The above conjecture holds under the assumption that n = 2.

Theorem ([Koutris et al., 2021])

The above conjecture holds for queries of the form
∃x1 · · · ∃xn+1

(
R1(x1, x2) ∧ R2(x2, x3) ∧ · · · ∧ Rn(xn, xn+1)

)
.

15/38

Is it Easier for Conjunctive Queries?

Conjecture

If Q is of the form ∃u⃗
(
R1(x⃗1, y⃗1) ∧ · · · ∧ Rn(x⃗n, y⃗n)

)
, then

CERTAINTY(Q) is in P or coNP-complete.

Theorem ([Koutris and W., 2017])

The above conjecture holds under the assumption that Ri ̸= Rj

whenever i ̸= j .

Somewhat later, if was proven that for every self-join-free CQ Q,
CERTAINTY(Q) is either in FO, L-complete, or coNP-complete.

Theorem ([Padmanabha et al., 2023])

The above conjecture holds under the assumption that n = 2.

Theorem ([Koutris et al., 2021])

The above conjecture holds for queries of the form
∃x1 · · · ∃xn+1

(
R1(x1, x2) ∧ R2(x2, x3) ∧ · · · ∧ Rn(xn, xn+1)

)
.

16/38

Table of Contents

Motivation

Complexity of CERTAINTY(Q)

CERTAINTY(Q) in Linear Time (and in FO)

Alternative Semantics

Concluding Remarks

17/38

The Good Among the Good, the Bad and the Ugly

A directed graph, called attack graph, is defined for every
conjunctive query.

Theorem ([Koutris and W., 2017])

Let Q = ∃u⃗
(
R1(x⃗1, y⃗1) ∧ · · · ∧ Rn(x⃗n, y⃗n)

)
with Ri ̸= Rj for i ̸= j .

Then,

▶ if Q’s attack graph is acyclic, then CERTAINTY(Q) is in FO;

▶ if Q’s attack graph is cyclic, then CERTAINTY(Q) is L-hard.

17/38

The Good Among the Good, the Bad and the Ugly

A directed graph, called attack graph, is defined for every
conjunctive query.

Theorem ([Koutris and W., 2017])

Let Q = ∃u⃗
(
R1(x⃗1, y⃗1) ∧ · · · ∧ Rn(x⃗n, y⃗n)

)
with Ri ̸= Rj for i ̸= j .

Then,

▶ if Q’s attack graph is acyclic, then CERTAINTY(Q) is in FO;

▶ if Q’s attack graph is cyclic, then CERTAINTY(Q) is L-hard.

18/38

Attack Graph N(v , x)

R1 (y , x) R2 (y , x)
S(y , z)

T (x , z , r)

P(x , y)

U(y , u)

W (u,w)

N+ = {v}
P+ = {x}
R1

+ = {y , x , z , r , u}
R2

+ = {y , x , z , r , u}
S+ = {y , x , u}
U+ = {y , x , z , r}
T+ = {x , z , y , u}
W+ = {u,w}

S+, e.g., is the closure of S ’s key w.r.t. all other FDs.
S can attack with z /∈ S+.

18/38

Attack Graph N(v , x)

R1 (y , x) R2 (y , x)
S(y , z)

T (x , z , r)

P(x , y)

U(y , u)

W (u,w)

N : v → x

R1 : y → x R2 : y → x
S : y → z

T : x , z → r

P : x → y

U : y → u

W : u,w → ∅

x

z

yy y y

u

N+ = {v}
P+ = {x}
R1

+ = {y , x , z , r , u}
R2

+ = {y , x , z , r , u}
S+ = {y , x , u}
U+ = {y , x , z , r}
T+ = {x , z , y , u}
W+ = {u,w}

S+, e.g., is the closure of S ’s key w.r.t. all other FDs.
S can attack with z /∈ S+.

19/38

Attack Graph and (Consistent) First-Order Rewriting

Q :

N(v , x)

R1 (y , x) R2 (y , x)
S(y , z)

T (x , z , r)

P(x , y)

U(y , u)

W (u,w)

We construct a first-order formula φN such that for every database:

φN is true in the database ⇐⇒ Q is true in every repair.

φN := ∃v (∃x (N(v , x)) ∧ ¬∃x (N(v , x) ∧ ¬φP(v , x))) ,

where φP(v , x) is a rewriting of the conjunctive query whose
atoms are the atoms of Q except N(v , x), in which variables v
and x are free.
The empty query rewrites to true.

19/38

Attack Graph and (Consistent) First-Order Rewriting

Q :

N(v , x)

R1 (y , x) R2 (y , x)
S(y , z)

T (x , z , r)

P(x , y)

U(y , u)

W (u,w)

We construct a first-order formula φN such that for every database:

φN is true in the database ⇐⇒ Q is true in every repair.

φN := ∃v (∃x (N(v , x)) ∧ ¬∃x (N(v , x) ∧ ¬φP(v , x))) ,

where φP(v , x) is a rewriting of the conjunctive query whose
atoms are the atoms of Q except N(v , x), in which variables v
and x are free.
The empty query rewrites to true.

20/38

Attack Graph ̸= Join Tree

N(v , x)

R1 (y , x) R2 (y , x)
S(y , z)

T (x , z , r)

P(x , y)

U(y , u)

W (u,w)

The subgraph induced by atoms that contain x is not connected.

21/38

Attack Graph that Is a Join Tree

N(v , x)

R1 (y , x) R2 (y , x)
S(y , x , z)

T (x , z , r)

P(x , y)

U(y , u)

W (u,w)

Moreover, every internal node V has zero indegree in the attack
graph of the subquery rooted at V (V ∈ {P,S ,U}).
Such a join tree is called a Pair-Pruning Join Tree (PPJT).
Yannakakis’ algorithm extends to the inconsistent setting:

Theorem ([Fan et al., 2023])

If Q has a PPJT, then CERTAINTY(Q) is in LIN (i.e., problems
solvable in linear time).

21/38

Attack Graph that Is a Join Tree

N(v , x)

R1 (y , x) R2 (y , x)
S(y , x , z)

T (x , z , r)

P(x , y)

U(y , u)

W (u,w)

Moreover, every internal node V has zero indegree in the attack
graph of the subquery rooted at V (V ∈ {P,S ,U}).
Such a join tree is called a Pair-Pruning Join Tree (PPJT).
Yannakakis’ algorithm extends to the inconsistent setting:

Theorem ([Fan et al., 2023])

If Q has a PPJT, then CERTAINTY(Q) is in LIN (i.e., problems
solvable in linear time).

21/38

Attack Graph that Is a Join Tree

N(v , x)

R1 (y , x) R2 (y , x)
S(y , x , z)

T (x , z , r)

P(x , y)

U(y , u)

W (u,w)

Moreover, every internal node V has zero indegree in the attack
graph of the subquery rooted at V (V ∈ {P,S ,U}).
Such a join tree is called a Pair-Pruning Join Tree (PPJT).
Yannakakis’ algorithm extends to the inconsistent setting:

Theorem ([Fan et al., 2023])

If Q has a PPJT, then CERTAINTY(Q) is in LIN (i.e., problems
solvable in linear time).

22/38

Yannakakis+Pruning

N(v , x)

R1 (y , x)

R2 (y , x) S(y , x , z)

T (x , z , r)

P(x , y)

U(y , u)

W (u,w)

T join(x , z)← T (x , z , r)

W join(u)←W (u,w)

Answer(yes)← N(v , x) ∧ ¬N fadingkey(v)

N fadingkey(v)← N(v , x) ∧ ¬P join(x)

P join(x)← P(x , y) ∧ ¬P fadingkey(x)

P fadingkey(x)← P(x , y) ∧ ¬U join(y)

P fadingkey(x)← P(x , y) ∧ ¬S join(x , y)

P fadingkey(x)← P(x , y) ∧ ¬R join
i (x , y)

U join(y)← U(y , u) ∧ ¬U fadingkey(y)

U fadingkey(y)← U(y , u) ∧ ¬W join(u)

S join(x , y)← S(y , x , z) ∧ ¬S fadingkey(y)

S fadingkey(y)← S(y , x , z) ∧ S(y , x ′, z) ∧ x ̸= x ′

S fadingkey(y)← S(y , x , z) ∧ ¬T join(x , z)

R join
i (x , y)← Ri (y , x) ∧ ¬R fadingkey

i (y)

R fadingkey
i (y)← Ri (y , x) ∧ Ri (y , x

′) ∧ x ̸= x ′

(1 ≤ i ≤ 2)

22/38

Yannakakis+Pruning

N(v , x)

R1 (y , x)

R2 (y , x) S(y , x , z)

T (x , z , r)

P(x , y)

U(y , u)

W (u,w)

T join(x , z)← T (x , z , r)

W join(u)←W (u,w)

Answer(yes)← N(v , x) ∧ ¬N fadingkey(v)

N fadingkey(v)← N(v , x) ∧ ¬P join(x)

P join(x)← P(x , y) ∧ ¬P fadingkey(x)

P fadingkey(x)← P(x , y) ∧ ¬U join(y)

P fadingkey(x)← P(x , y) ∧ ¬S join(x , y)

P fadingkey(x)← P(x , y) ∧ ¬R join
i (x , y)

U join(y)← U(y , u) ∧ ¬U fadingkey(y)

U fadingkey(y)← U(y , u) ∧ ¬W join(u)

S join(x , y)← S(y , x , z) ∧ ¬S fadingkey(y)

S fadingkey(y)← S(y , x , z) ∧ S(y , x ′, z) ∧ x ̸= x ′

S fadingkey(y)← S(y , x , z) ∧ ¬T join(x , z)

R join
i (x , y)← Ri (y , x) ∧ ¬R fadingkey

i (y)

R fadingkey
i (y)← Ri (y , x) ∧ Ri (y , x

′) ∧ x ̸= x ′

(1 ≤ i ≤ 2)

22/38

Yannakakis+Pruning

N(v , x)

R1 (y , x)

R2 (y , x) S(y , x , z)

T (x , z , r)

P(x , y)

U(y , u)

W (u,w)

T join(x , z)← T (x , z , r)

W join(u)←W (u,w)

Answer(yes)← N(v , x) ∧ ¬N fadingkey(v)

N fadingkey(v)← N(v , x) ∧ ¬P join(x)

P join(x)← P(x , y) ∧ ¬P fadingkey(x)

P fadingkey(x)← P(x , y) ∧ ¬U join(y)

P fadingkey(x)← P(x , y) ∧ ¬S join(x , y)

P fadingkey(x)← P(x , y) ∧ ¬R join
i (x , y)

U join(y)← U(y , u) ∧ ¬U fadingkey(y)

U fadingkey(y)← U(y , u) ∧ ¬W join(u)

S join(x , y)← S(y , x , z) ∧ ¬S fadingkey(y)

S fadingkey(y)← S(y , x , z) ∧ S(y , x ′, z) ∧ x ̸= x ′

S fadingkey(y)← S(y , x , z) ∧ ¬T join(x , z)

R join
i (x , y)← Ri (y , x) ∧ ¬R fadingkey

i (y)

R fadingkey
i (y)← Ri (y , x) ∧ Ri (y , x

′) ∧ x ̸= x ′

(1 ≤ i ≤ 2)

22/38

Yannakakis+Pruning

N(v , x)

R1 (y , x)

R2 (y , x) S(y , x , z)

T (x , z , r)

P(x , y)

U(y , u)

W (u,w)

T join(x , z)← T (x , z , r)

W join(u)←W (u,w)

Answer(yes)← N(v , x) ∧ ¬N fadingkey(v)

N fadingkey(v)← N(v , x) ∧ ¬P join(x)

P join(x)← P(x , y) ∧ ¬P fadingkey(x)

P fadingkey(x)← P(x , y) ∧ ¬U join(y)

P fadingkey(x)← P(x , y) ∧ ¬S join(x , y)

P fadingkey(x)← P(x , y) ∧ ¬R join
i (x , y)

U join(y)← U(y , u) ∧ ¬U fadingkey(y)

U fadingkey(y)← U(y , u) ∧ ¬W join(u)

S join(x , y)← S(y , x , z) ∧ ¬S fadingkey(y)

S fadingkey(y)← S(y , x , z) ∧ S(y , x ′, z) ∧ x ̸= x ′

S fadingkey(y)← S(y , x , z) ∧ ¬T join(x , z)

R join
i (x , y)← Ri (y , x) ∧ ¬R fadingkey

i (y)

R fadingkey
i (y)← Ri (y , x) ∧ Ri (y , x

′) ∧ x ̸= x ′

(1 ≤ i ≤ 2)

22/38

Yannakakis+Pruning

N(v , x)

R1 (y , x)

R2 (y , x) S(y , x , z)

T (x , z , r)

P(x , y)

U(y , u)

W (u,w)

T join(x , z)← T (x , z , r)

W join(u)←W (u,w)

Answer(yes)← N(v , x) ∧ ¬N fadingkey(v)

N fadingkey(v)← N(v , x) ∧ ¬P join(x)

P join(x)← P(x , y) ∧ ¬P fadingkey(x)

P fadingkey(x)← P(x , y) ∧ ¬U join(y)

P fadingkey(x)← P(x , y) ∧ ¬S join(x , y)

P fadingkey(x)← P(x , y) ∧ ¬R join
i (x , y)

U join(y)← U(y , u) ∧ ¬U fadingkey(y)

U fadingkey(y)← U(y , u) ∧ ¬W join(u)

S join(x , y)← S(y , x , z) ∧ ¬S fadingkey(y)

S fadingkey(y)← S(y , x , z) ∧ S(y , x ′, z) ∧ x ̸= x ′

S fadingkey(y)← S(y , x , z) ∧ ¬T join(x , z)

R join
i (x , y)← Ri (y , x) ∧ ¬R fadingkey

i (y)

R fadingkey
i (y)← Ri (y , x) ∧ Ri (y , x

′) ∧ x ̸= x ′

(1 ≤ i ≤ 2)

22/38

Yannakakis+Pruning

N(v , x)

R1 (y , x)

R2 (y , x) S(y , x , z)

T (x , z , r)

P(x , y)

U(y , u)

W (u,w)

T join(x , z)← T (x , z , r)

W join(u)←W (u,w)

Answer(yes)← N(v , x) ∧ ¬N fadingkey(v)

N fadingkey(v)← N(v , x) ∧ ¬P join(x)

P join(x)← P(x , y) ∧ ¬P fadingkey(x)

P fadingkey(x)← P(x , y) ∧ ¬U join(y)

P fadingkey(x)← P(x , y) ∧ ¬S join(x , y)

P fadingkey(x)← P(x , y) ∧ ¬R join
i (x , y)

U join(y)← U(y , u) ∧ ¬U fadingkey(y)

U fadingkey(y)← U(y , u) ∧ ¬W join(u)

S join(x , y)← S(y , x , z) ∧ ¬S fadingkey(y)

S fadingkey(y)← S(y , x , z) ∧ S(y , x ′, z) ∧ x ̸= x ′

S fadingkey(y)← S(y , x , z) ∧ ¬T join(x , z)

R join
i (x , y)← Ri (y , x) ∧ ¬R fadingkey

i (y)

R fadingkey
i (y)← Ri (y , x) ∧ Ri (y , x

′) ∧ x ̸= x ′

(1 ≤ i ≤ 2)

23/38

Observation Regarding Correctness

Ri -blocks of size ≥ 2 can be ignored. For example,

R1 y x

a c1
a c2

R2 y x

a c1
a c2

To construct a repair that falsifies the query, pick R1(a, ci) and
R2(a, cj) such that ci ̸= cj .

24/38

LinCQA

▶ LinCQA is a system that takes as input any query with
a PPJT and outputs rewritings in both SQL and non-recursive
Datalog with negation.

▶ https://github.com/xiatingouyang/LinCQA/

▶ See [Fan et al., 2023] for experiments.

https://github.com/xiatingouyang/LinCQA/

25/38

Table of Contents

Motivation

Complexity of CERTAINTY(Q)

CERTAINTY(Q) in Linear Time (and in FO)

Alternative Semantics
Range Consistent Query Answering
Counting Variant of CERTAINTY(Q)

Concluding Remarks

26/38

Table of Contents

Motivation

Complexity of CERTAINTY(Q)

CERTAINTY(Q) in Linear Time (and in FO)

Alternative Semantics
Range Consistent Query Answering
Counting Variant of CERTAINTY(Q)

Concluding Remarks

27/38

Range Consistent Query Answering [Arenas et al., 2001]
For queries returning numbers instead of Booleans.
For ease of presentation, all queries return a single number.

ACTORS
Name Gender Age
Jolie F 48
Pitt F 59
Pitt M 60
Reeves F 52
Reeves F 53

Get the age of the oldest actress:

MAX(z)← ACTORS(x ,F, z).

▶ The lowest answer across all repairs is MAX({48, 52}) = 52;

▶ the greatest answer across all repairs is
MAX({48, 59, 53}) = 59;

▶ the interval [52, 59] is called the range consistent answer.

27/38

Range Consistent Query Answering [Arenas et al., 2001]
For queries returning numbers instead of Booleans.
For ease of presentation, all queries return a single number.

ACTORS
Name Gender Age
Jolie F 48
Pitt F 59
Pitt M 60
Reeves F 52
Reeves F 53

Get the age of the oldest actress:

MAX(z)← ACTORS(x ,F, z).

▶ The lowest answer across all repairs is MAX({48, 52}) = 52;

▶ the greatest answer across all repairs is
MAX({48, 59, 53}) = 59;

▶ the interval [52, 59] is called the range consistent answer.

27/38

Range Consistent Query Answering [Arenas et al., 2001]
For queries returning numbers instead of Booleans.
For ease of presentation, all queries return a single number.

ACTORS
Name Gender Age
Jolie F 48
Pitt F 59
Pitt M 60
Reeves F 52
Reeves F 53

Get the age of the oldest actress:

MAX(z)← ACTORS(x ,F, z).

▶ The lowest answer across all repairs is MAX({48, 52}) = 52;

▶ the greatest answer across all repairs is
MAX({48, 59, 53}) = 59;

▶ the interval [52, 59] is called the range consistent answer.

28/38

Formal Setting

▶ Numerical terms f () expressible in the (safe) rule format

AGG(r)← R1(x⃗1, y⃗1) ∧ R2(x⃗2, y⃗2) ∧ · · · ∧ Rn(x⃗n, y⃗n), (2)

where r is either a numerical variable or a constant, and AGG

is an aggregate operator (e.g., MAX, MIN, SUM, COUNT, AVG);
assume Ri ̸= Rj if i ̸= j .

▶ Given a database instance, let f +() and f −() be, respectively,
the greatest and smallest values of f () across all repairs.

▶ Aggregate logic Laggr [Hella et al., 2001]: FOL + aggregation.

▶ Question in [Fuxman, 2007] and [Dixit and Kolaitis, 2022]:

When can f +() and f −() be expressed in Laggr?
1. f +() and f −() are not expressible in Laggr if the attack graph

of (2) is cyclic (because queries in Laggr are Hanf-local).
2. Does the converse hold?

28/38

Formal Setting

▶ Numerical terms f () expressible in the (safe) rule format

AGG(r)← R1(x⃗1, y⃗1) ∧ R2(x⃗2, y⃗2) ∧ · · · ∧ Rn(x⃗n, y⃗n), (2)

where r is either a numerical variable or a constant, and AGG

is an aggregate operator (e.g., MAX, MIN, SUM, COUNT, AVG);
assume Ri ̸= Rj if i ̸= j .

▶ Given a database instance, let f +() and f −() be, respectively,
the greatest and smallest values of f () across all repairs.

▶ Aggregate logic Laggr [Hella et al., 2001]: FOL + aggregation.

▶ Question in [Fuxman, 2007] and [Dixit and Kolaitis, 2022]:

When can f +() and f −() be expressed in Laggr?
1. f +() and f −() are not expressible in Laggr if the attack graph

of (2) is cyclic (because queries in Laggr are Hanf-local).
2. Does the converse hold?

28/38

Formal Setting

▶ Numerical terms f () expressible in the (safe) rule format

AGG(r)← R1(x⃗1, y⃗1) ∧ R2(x⃗2, y⃗2) ∧ · · · ∧ Rn(x⃗n, y⃗n), (2)

where r is either a numerical variable or a constant, and AGG

is an aggregate operator (e.g., MAX, MIN, SUM, COUNT, AVG);
assume Ri ̸= Rj if i ̸= j .

▶ Given a database instance, let f +() and f −() be, respectively,
the greatest and smallest values of f () across all repairs.

▶ Aggregate logic Laggr [Hella et al., 2001]: FOL + aggregation.

▶ Question in [Fuxman, 2007] and [Dixit and Kolaitis, 2022]:

When can f +() and f −() be expressed in Laggr?
1. f +() and f −() are not expressible in Laggr if the attack graph

of (2) is cyclic (because queries in Laggr are Hanf-local).
2. Does the converse hold?

29/38

Rewriting Example

MAX(z)← ACTORS(x ,F, z).

▶ Upper bound rewriting:

UB(MAX(z))← ACTORS(x ,F, z)

▶ Lower bound rewriting:

POSSIBLE M(x)← ACTORS(x ,M, z)

CERTAIN F(x , z)← ACTORS(x ,F, z),¬POSSIBLE M(x)

L(x , MIN(z))← CERTAIN F(x , z)

LB(MAX(z))← L(x , z)

30/38

Table of Contents

Motivation

Complexity of CERTAINTY(Q)

CERTAINTY(Q) in Linear Time (and in FO)

Alternative Semantics
Range Consistent Query Answering
Counting Variant of CERTAINTY(Q)

Concluding Remarks

31/38

Counting
Given a Boolean query Q, define the following counting problem:

Problem ♯CERTAINTY(Q)

Input: A database instance that may
violate primary-key constraints.

Question: How many repairs of satisfy Q?

Complexity Classification Task

Input: A self-join-free Boolean conjunctive query Q.

Task: Determine lower and upper complexity bounds on
the complexity of ♯CERTAINTY(q), in terms of
common complexity classes like FP and ♯P.

▶ Solved in [Maslowski and W., 2013] and generalized to FDs
in [Calautti et al., 2022].

▶ Same problem as query answering in block-independent
disjoint (BID) probabilistic databases under the restriction
that in every block b, every tuple has probability 1

|b| .

31/38

Counting
Given a Boolean query Q, define the following counting problem:

Problem ♯CERTAINTY(Q)

Input: A database instance that may
violate primary-key constraints.

Question: How many repairs of satisfy Q?

Complexity Classification Task

Input: A self-join-free Boolean conjunctive query Q.

Task: Determine lower and upper complexity bounds on
the complexity of ♯CERTAINTY(q), in terms of
common complexity classes like FP and ♯P.

▶ Solved in [Maslowski and W., 2013] and generalized to FDs
in [Calautti et al., 2022].

▶ Same problem as query answering in block-independent
disjoint (BID) probabilistic databases under the restriction
that in every block b, every tuple has probability 1

|b| .

31/38

Counting
Given a Boolean query Q, define the following counting problem:

Problem ♯CERTAINTY(Q)

Input: A database instance that may
violate primary-key constraints.

Question: How many repairs of satisfy Q?

Complexity Classification Task

Input: A self-join-free Boolean conjunctive query Q.

Task: Determine lower and upper complexity bounds on
the complexity of ♯CERTAINTY(q), in terms of
common complexity classes like FP and ♯P.

▶ Solved in [Maslowski and W., 2013] and generalized to FDs
in [Calautti et al., 2022].

▶ Same problem as query answering in block-independent
disjoint (BID) probabilistic databases under the restriction
that in every block b, every tuple has probability 1

|b| .

32/38

BID Databases

Every input to CERTAINTY(Q) is a block-independent disjoint
database without probabilities (or with uniform probabilities).

� Inconsistency is not only a burden, but also a chance. 1

1Inspired by [Kern-Isberner and Lukasiewicz, 2017]. The image is
from [Dalvi et al., 2009].

33/38

Table of Contents

Motivation

Complexity of CERTAINTY(Q)

CERTAINTY(Q) in Linear Time (and in FO)

Alternative Semantics

Concluding Remarks

34/38

Concluding Remarks
Consistent Query Answering is an active research area
since [Arenas et al., 1999]:
▶ Database repairing w.r.t. different classes of constraints
▶ Database repairing and data exchange
▶ Database repairing and approximations
▶ Database repairing and preferences
▶ Database repairing and implementations
▶ Database repairing and database management systems
▶ Consistent query answering for queries with negation
▶ Consistent query answering in description logics
▶ Consistent query answering over graph databases
▶ . . .

35/38

Communications of the ACM, March 2024

36/38

Thanks!

FYI, Brad Pitt celebrated his 60th birthday on December 18, 2023.

37/38

References I

Arenas, M., Bertossi, L. E., and Chomicki, J. (1999).

Consistent query answers in inconsistent databases.
In PODS, pages 68–79. ACM Press.

Arenas, M., Bertossi, L. E., and Chomicki, J. (2001).

Scalar aggregation in fd-inconsistent databases.
In ICDT, volume 1973 of Lecture Notes in Computer Science, pages 39–53. Springer.

Calautti, M., Livshits, E., Pieris, A., and Schneider, M. (2022).

Counting database repairs entailing a query: The case of functional dependencies.
In PODS, pages 403–412. ACM.

Chomicki, J. and Marcinkowski, J. (2005).

Minimal-change integrity maintenance using tuple deletions.
Inf. Comput., 197(1-2):90–121.

Dalvi, N. N., Ré, C., and Suciu, D. (2009).

Probabilistic databases: diamonds in the dirt.
Commun. ACM, 52(7):86–94.

Dixit, A. A. and Kolaitis, P. G. (2022).

Consistent answers of aggregation queries via SAT.
In ICDE, pages 924–937. IEEE.

Fan, Z., Koutris, P., Ouyang, X., and Wijsen, J. (2023).

LinCQA: Faster consistent query answering with linear time guarantees.
Proc. ACM Manag. Data, 1(1):38:1–38:25.

Fontaine, G. (2015).

Why is it hard to obtain a dichotomy for consistent query answering?
ACM Trans. Comput. Log., 16(1):7:1–7:24.

38/38

References II

Fuxman, A. (2007).

Efficient query processing over inconsistent databases.
PhD thesis, University of Toronto.

Hella, L., Libkin, L., Nurmonen, J., and Wong, L. (2001).

Logics with aggregate operators.
J. ACM, 48(4):880–907.

Kern-Isberner, G. and Lukasiewicz, T. (2017).

Many facets of reasoning under uncertainty, inconsistency, vagueness, and preferences: A brief survey.
KI, 31(1):9–13.

Koutris, P., Ouyang, X., and Wijsen, J. (2021).

Consistent query answering for primary keys on path queries.
In PODS, pages 215–232. ACM.

Koutris, P. and W., J. (2017).

Consistent query answering for self-join-free conjunctive queries under primary key constraints.
ACM Trans. Database Syst., 42(2):9:1–9:45.

Maslowski, D. and W., J. (2013).

A dichotomy in the complexity of counting database repairs.
J. Comput. Syst. Sci., 79(6):958–983.

Padmanabha, A., Segoufin, L., and Sirangelo, C. (2023).

A dichotomy in the complexity of consistent query answering for two atom queries with self-join.
CoRR, abs/2309.12059.

W., J. (2010).

A remark on the complexity of consistent conjunctive query answering under primary key violations.
Inf. Process. Lett., 110(21):950–955.

	Motivation
	Complexity of CERTAINTY(Q)
	CERTAINTY(Q) in Linear Time (and in FO)
	Alternative Semantics
	Range Consistent Query Answering
	Counting Variant of CERTAINTY(Q)

	Concluding Remarks

