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Inconsistent Data
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Inconsistent Databases

ACTORS Name Gender Age
Jolie F 48
Pitt M 59
Pitt M 60

Every actor has, at most, one gender and one age:
ACTORS PRIMARY KEY(Name).

Data cleaning takes time (and money). Can we already obtain
“reliable” information by querying the inconsistent database?
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Querying Inconsistent Databases

For ease of presentation,
all queries return a
Boolean (true/false).

ACTORS Name Gender Age
Jolie F 48
Pitt M 59
Pitt M 60

▶ Is Pitt’s age 60?

∃y (ACTORS(Pitt, y , 60)) is “possibly false”.

▶ Is Pitt older than Jolie?

∃y∃z∃v∃w
(

ACTORS(Pitt, y , z)∧
ACTORS(Jolie, v ,w) ∧ z > w

)
is “certainly true”.

A block is a maximal set of tuples of the same relation that agree
on their primary key (blocks are separated by dashed lines).
A repair (or possible world) is obtained by picking a single tuple from
each block.

With this notion, “certainly true” means “true in every repair”.

If 2 ages are stored for n actors, there are at least 2n repairs.
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Consistent Query Answering for Primary Keys

Given a Boolean query Q, define the following decision problem:

Problem CERTAINTY(Q)

Input: A database instance D that may
violate primary-key constraints.

Question: Is Q true in every repair of D?

Example

If Q60 = ∃y (ACTORS(Pitt, y , 60)), then the answer to
CERTAINTY(Q60) is “no” on our example database.

Remark
We assume that each relation name has a fixed primary key.
Primary-key positions will be underlined. Primary keys can thus be
derived from the query.
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Solving CERTAINTY(Q)

Proposition

CERTAINTY(Q) is in coNP for first-order queries Q.

Proof.
A “‘no” certificate is a repair that falsifies Q.

CERTAINTY(Q60) is in FO, as the following are equivalent for
every database instance D:

1. Q is true in every repair of D;

2. D satisfies Q60 ∧ ¬∃y∃z (ACTORS(Pitt, y , z) ∧ (z ̸= 60)).
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The Good, the Bad and the Ugly

Proposition

For Qgood = ∃y (ACTORS(Pitt, y , 60)), the decision problem
CERTAINTY(Qgood) is in FO.

Theorem ([W., 2010])

For Qbad = ∃x∃y
(
R(x , y) ∧ S(y , x)

)
, the decision problem

CERTAINTY(Qbad) is in P \ FO (later, it was proven L-complete).

Theorem ([Chomicki and Marcinkowski, 2005])

For Qugly = ∃x1∃x2∃z
(
ACTORS(x1,M, z) ∧ ACTORS(x2,F, z)

)
,

the decision problem CERTAINTY(Qugly) is coNP-complete.
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Research Agenda

▶ We aim to go beyond the task of determining
CERTAINTY(Q) for individual queries Q.

▶ For “reasonable” classes C of queries, write an algorithm for
the following problem:

Complexity Classification Task

Input: A query Q in the class C.
Task: The computational complexity of

CERTAINTY(Q), in terms of complexity classes
like FO, P, coNP-complete,. . .
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Which Query Classes Are “Reasonable”?

▶ The class of (Boolean) conjunctive queries (a.k.a.
Select-Project-Join queries):

∃u⃗
(
R1(x⃗1, y⃗1) ∧ R2(x⃗2, y⃗2) ∧ · · · ∧ Rn(x⃗n, y⃗n)

)
. (1)

▶ The class of disjunctions of conjunctive queries (a.k.a. UCQ
queries):

Q1 ∨ Q2 ∨ · · · ∨ Qm,

where each Qi is of the form (1).
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Which Complexity Classes?
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Classifying CERTAINTY(Q) in P/coNP-complete is Hard

Conjecture

If Q is a disjunction of conjunctive queries, then CERTAINTY(Q)
is in P or coNP-complete.

Theorem ([Fontaine, 2015])

The above conjecture implies
Bulatov’s dichotomy theorem for
the conservative constraint
satisfaction problem (CSP).
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Is it Easier for Conjunctive Queries?

Conjecture

If Q is of the form ∃u⃗
(
R1(x⃗1, y⃗1) ∧ · · · ∧ Rn(x⃗n, y⃗n)

)
, then

CERTAINTY(Q) is in P or coNP-complete.

Theorem ([Koutris and W., 2017])

The above conjecture holds under the assumption that Ri ̸= Rj

whenever i ̸= j .

Somewhat later, if was proven that for every self-join-free CQ Q,
CERTAINTY(Q) is either in FO, L-complete, or coNP-complete.

Theorem ([Padmanabha et al., 2023])

The above conjecture holds under the assumption that n = 2.

Theorem ([Koutris et al., 2021])

The above conjecture holds for queries of the form
∃x1 · · · ∃xn+1

(
R1(x1, x2) ∧ R2(x2, x3) ∧ · · · ∧ Rn(xn, xn+1)

)
.
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The Good Among the Good, the Bad and the Ugly

A directed graph, called attack graph, is defined for every
conjunctive query.

Theorem ([Koutris and W., 2017])

Let Q = ∃u⃗
(
R1(x⃗1, y⃗1) ∧ · · · ∧ Rn(x⃗n, y⃗n)

)
with Ri ̸= Rj for i ̸= j .

Then,

▶ if Q’s attack graph is acyclic, then CERTAINTY(Q) is in FO;

▶ if Q’s attack graph is cyclic, then CERTAINTY(Q) is L-hard.
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Attack Graph N(v , x)

R1 (y , x) R2 (y , x)
S(y , z)

T (x , z , r)

P(x , y)

U(y , u)

W (u,w )

N+ = {v}
P+ = {x}
R1

+ = {y , x , z , r , u}
R2

+ = {y , x , z , r , u}
S+ = {y , x , u}
U+ = {y , x , z , r}
T+ = {x , z , y , u}
W+ = {u,w}

S+, e.g., is the closure of S ’s key w.r.t. all other FDs.
S can attack with z /∈ S+.
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Attack Graph and (Consistent) First-Order Rewriting

Q :

N(v , x)

R1 (y , x) R2 (y , x)
S(y , z)

T (x , z , r)

P(x , y)

U(y , u)

W (u,w )

We construct a first-order formula φN such that for every database:

φN is true in the database ⇐⇒ Q is true in every repair.

φN := ∃v (∃x (N(v , x)) ∧ ¬∃x (N(v , x) ∧ ¬φP(v , x))) ,

where φP(v , x) is a rewriting of the conjunctive query whose
atoms are the atoms of Q except N(v , x), in which variables v
and x are free.
The empty query rewrites to true.
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Attack Graph ̸= Join Tree

N(v , x)

R1 (y , x) R2 (y , x)
S(y , z)

T (x , z , r)

P(x , y)

U(y , u)

W (u,w )

The subgraph induced by atoms that contain x is not connected.
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Attack Graph that Is a Join Tree

N(v , x)

R1 (y , x) R2 (y , x)
S(y , x , z)

T (x , z , r)

P(x , y )

U(y , u)

W (u,w)

Moreover, every internal node V has zero indegree in the attack
graph of the subquery rooted at V (V ∈ {P,S ,U}).
Such a join tree is called a Pair-Pruning Join Tree (PPJT).
Yannakakis’ algorithm extends to the inconsistent setting:

Theorem ([Fan et al., 2023])

If Q has a PPJT, then CERTAINTY(Q) is in LIN (i.e., problems
solvable in linear time).
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Yannakakis+Pruning

N(v , x)

R1 (y , x)

R2 (y , x) S(y , x , z)

T (x , z , r)

P(x , y)

U(y , u)

W (u,w)

T join(x , z)← T (x , z , r)

W join(u)←W (u,w)

Answer(yes)← N(v , x) ∧ ¬N fadingkey(v)

N fadingkey(v)← N(v , x) ∧ ¬P join(x)

P join(x)← P(x , y) ∧ ¬P fadingkey(x)

P fadingkey(x)← P(x , y) ∧ ¬U join(y)

P fadingkey(x)← P(x , y) ∧ ¬S join(x , y)

P fadingkey(x)← P(x , y) ∧ ¬R join
i (x , y)

U join(y)← U(y , u) ∧ ¬U fadingkey(y)

U fadingkey(y)← U(y , u) ∧ ¬W join(u)

S join(x , y)← S(y , x , z) ∧ ¬S fadingkey(y)

S fadingkey(y)← S(y , x , z) ∧ S(y , x ′, z) ∧ x ̸= x ′

S fadingkey(y)← S(y , x , z) ∧ ¬T join(x , z)

R join
i (x , y)← Ri (y , x) ∧ ¬R fadingkey

i (y)

R fadingkey
i (y)← Ri (y , x) ∧ Ri (y , x

′) ∧ x ̸= x ′

(1 ≤ i ≤ 2)
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Observation Regarding Correctness

Ri -blocks of size ≥ 2 can be ignored. For example,

R1 y x

a c1
a c2

R2 y x

a c1
a c2

To construct a repair that falsifies the query, pick R1(a, ci ) and
R2(a, cj) such that ci ̸= cj .
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LinCQA

▶ LinCQA is a system that takes as input any query with
a PPJT and outputs rewritings in both SQL and non-recursive
Datalog with negation.

▶ https://github.com/xiatingouyang/LinCQA/

▶ See [Fan et al., 2023] for experiments.

https://github.com/xiatingouyang/LinCQA/
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Range Consistent Query Answering [Arenas et al., 2001]
For queries returning numbers instead of Booleans.
For ease of presentation, all queries return a single number.

ACTORS
Name Gender Age
Jolie F 48
Pitt F 59
Pitt M 60
Reeves F 52
Reeves F 53

Get the age of the oldest actress:

MAX(z)← ACTORS(x ,F, z).

▶ The lowest answer across all repairs is MAX({48, 52}) = 52;

▶ the greatest answer across all repairs is
MAX({48, 59, 53}) = 59;

▶ the interval [52, 59] is called the range consistent answer.
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Formal Setting

▶ Numerical terms f () expressible in the (safe) rule format

AGG(r)← R1(x⃗1, y⃗1) ∧ R2(x⃗2, y⃗2) ∧ · · · ∧ Rn(x⃗n, y⃗n), (2)

where r is either a numerical variable or a constant, and AGG

is an aggregate operator (e.g., MAX, MIN, SUM, COUNT, AVG);
assume Ri ̸= Rj if i ̸= j .

▶ Given a database instance, let f +() and f −() be, respectively,
the greatest and smallest values of f () across all repairs.

▶ Aggregate logic Laggr [Hella et al., 2001]: FOL + aggregation.

▶ Question in [Fuxman, 2007] and [Dixit and Kolaitis, 2022]:

When can f +() and f −() be expressed in Laggr?
1. f +() and f −() are not expressible in Laggr if the attack graph

of (2) is cyclic (because queries in Laggr are Hanf-local).
2. Does the converse hold?
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Rewriting Example

MAX(z)← ACTORS(x ,F, z).

▶ Upper bound rewriting:

UB(MAX(z))← ACTORS(x ,F, z)

▶ Lower bound rewriting:

POSSIBLE M(x)← ACTORS(x ,M, z)

CERTAIN F(x , z)← ACTORS(x ,F, z),¬POSSIBLE M(x)

L(x , MIN(z))← CERTAIN F(x , z)

LB(MAX(z))← L(x , z)
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Counting
Given a Boolean query Q, define the following counting problem:

Problem ♯CERTAINTY(Q)

Input: A database instance that may
violate primary-key constraints.

Question: How many repairs of satisfy Q?

Complexity Classification Task

Input: A self-join-free Boolean conjunctive query Q.

Task: Determine lower and upper complexity bounds on
the complexity of ♯CERTAINTY(q), in terms of
common complexity classes like FP and ♯P.

▶ Solved in [Maslowski and W., 2013] and generalized to FDs
in [Calautti et al., 2022].

▶ Same problem as query answering in block-independent
disjoint (BID) probabilistic databases under the restriction
that in every block b, every tuple has probability 1

|b| .
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BID Databases

Every input to CERTAINTY(Q) is a block-independent disjoint
database without probabilities (or with uniform probabilities).

� Inconsistency is not only a burden, but also a chance. 1

1Inspired by [Kern-Isberner and Lukasiewicz, 2017]. The image is
from [Dalvi et al., 2009].
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Concluding Remarks
Consistent Query Answering is an active research area
since [Arenas et al., 1999]:
▶ Database repairing w.r.t. different classes of constraints
▶ Database repairing and data exchange
▶ Database repairing and approximations
▶ Database repairing and preferences
▶ Database repairing and implementations
▶ Database repairing and database management systems
▶ Consistent query answering for queries with negation
▶ Consistent query answering in description logics
▶ Consistent query answering over graph databases
▶ . . .
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Thanks!

FYI, Brad Pitt celebrated his 60th birthday on December 18, 2023.
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