Consistent Query Answering with Respect to Primary Keys
 [Some] Past Research and Future Challenges

Jef Wijsen
University of Mons

Dagstuhl Seminar 24111, March 11-15, 2024

Table of Contents

Motivation

Complexity of CERTAINTY (Q)
$\operatorname{CERTAINTY}(Q)$ in Linear Time (and in FO)

Alternative Semantics

Concluding Remarks

Table of Contents

Motivation

Complexity of CERTAINTY (Q)
$\operatorname{CERTAINTY}(Q)$ in Linear Time (and in FO)

Alternative Semantics

Concluding Remarks

Inconsistent Data

:= Perrey Reeves

$\underline{\text { Article Talk } \quad \text { Read Edit View history }}$

From Wikipedia, the free encyclopedia

Perrey Reeves (bor 1970 or 1971 (age 52-53)) ${ }^{11}$ is an American film and televisiolmaetrocs sheris Dest known for her recurring role as Melissa Gold on the television series Entourage from 2004 to 2011 and Marissa Jones in the 2003 comedy Old School.

Early life [edit]

Reeves was born in New York City and raised in New Hampshire, ${ }^{[2]}$ the daughter of Dr. Alexander Reeves, a

Inconsistent Databases

> ACTORS $\begin{aligned} & \text { Name Gender Age }\end{aligned}$ Jolie F 48
> $\overline{\bar{P}_{\text {itt }}}{ }^{----\bar{M}}{ }^{---\overline{59}}$
> Pitt _ _ M _ 60

Every actor has, at most, one gender and one age: ACTOR.S PRTMARY KEY (Name)

Data cleaning takes time (and money). Can we already obtain "reliable" information by querving the inconsistent database?

Inconsistent Databases

Every actor has, at most, one gender and one age: ACTORS PRIMARY KEY (Name).

Data cleaning takes time (and money). Can we already obtain "reliable" information by querying the inconsistent database?

Querying Inconsistent Databases

For ease of presentation, all queries return a Boolean (true/false).

ACTORS | Name | Gender | Age | |
| :--- | :--- | :--- | :--- |
| | $\underline{\text { Jolie }}$ | F | 48 |
| $\overline{\text { Pitt }}$ | - | M | 59^{-} |
| Pitt | M | 60 | |

- Is Pitt's age 60?

$$
\exists y(\text { ACTORS }(\text { Pitt }, y, 60)) \text { is "possibly false". }
$$

- Is Pitt older than Jolie?

$$
\exists y \exists z \exists v \exists w\binom{\text { ACTORS }(\underline{\text { Pitt, }}, y, z) \wedge}{\text { ACTORS }(\underline{\text { Jolie }}, v, w) \wedge z>w} \text { is "certainly true". }
$$

\square

Querying Inconsistent Databases

For ease of presentation, all queries return a Boolean (true/false).

ACTORS | Name | Gender | Age | |
| :--- | :--- | :--- | :--- |
| | Jolie | F | 48 |
| $\overline{\text { Pitt }}$ | - | M | 59^{-} |
| Pitt | M | 60 | |

- Is Pitt's age 60?

$$
\exists y(\text { ACTORS }(\text { Pitt }, y, 60)) \text { is "possibly false". }
$$

- Is Pitt older than Jolie?
$\exists y \exists z \exists v \exists w\binom{$ ACTORS $(\underline{\text { Pitt }, ~} y, z) \wedge}{$ ACTORS $(\underline{\text { Jolie }, ~} v, w) \wedge z>w}$ is "certainly true".
A block is a maximal set of tuples of the same relation that agree on their primary key (blocks are separated by dashed lines). A repair (or possible world) is obtained by picking a single tuple from each block.
With this notion, "certainly true" means "true in every repair". If 2 ages are stored for n actors, there are at least 2^{n} repairs.

Consistent Query Answering for Primary Keys

Given a Boolean query Q, define the following decision problem:

```
Problem CERTAINTY(Q)
    Input: A database instance D that may
                violate primary-key constraints.
    Question: Is Q true in every repair of D?
```


Consistent Query Answering for Primary Keys

Given a Boolean query Q, define the following decision problem:

```
Problem CERTAINTY(Q)
    Input: A database instance D that may
        violate primary-key constraints.
    Question: Is Q true in every repair of D?
```


Example

If $Q_{60}=\exists y(\operatorname{ACTORS}($ Pitt, $y, 60))$, then the answer to CERTAINTY $\left(Q_{60}\right)$ is "no" on our example database.

Remark

We assume that each relation name has a fixed primary key.
Primary-key positions will be underlined. Primary keys can thus be derived from the query.

Table of Contents

Motivation
Complexity of CERTAINTY(Q)
$\operatorname{CERTAINTY}(Q)$ in Linear Time (and in FO)
Alternative Semantics
Concluding Remarks

Solving CERTAINTY (Q)

Proposition
$\operatorname{CERTAINTY}(Q)$ is in coNP for first-order queries Q.
Proof.
A "'no" certificate is a repair that falsifies Q.
$\operatorname{CERTAINTY}\left(Q_{60}\right)$ is in FO, as the following are equivalent for every database instance D : Q is true in every repair of D; D satisfies $Q_{60} \wedge \neg \exists y \exists z($ ACTORS $($ Pitt, $, y, z) \wedge(z \neq 60))$.

Solving CERTAINTY (Q)

Proposition
CERTAINTY (Q) is in coNP for first-order queries Q.
Proof.
A "'no" certificate is a repair that falsifies Q.

CERTAINTY $\left(Q_{60}\right)$ is in FO, as the following are equivalent for every database instance D :

1. Q is true in every repair of D;
2. D satisfies $Q_{60} \wedge \neg \exists y \exists z(\operatorname{ACTORS}(\underline{\text { Pitt }, ~} y, z) \wedge(z \neq 60))$.

The Good, the Bad and the Ugly

The Good, the Bad and the Ugly

Proposition
For $Q_{\text {good }}=\exists y($ ACTORS $($ Pitt, $y, 60))$, the decision problem CERTAINTY $\left(Q_{\text {good }}\right)$ is in FO.

The Good, the Bad and the Ugly

Proposition
For $Q_{\mathrm{good}}=\exists y(\operatorname{ACTORS}($ Pitt, $y, 60))$, the decision problem CERTAINTY $\left(Q_{\text {good }}\right)$ is in FO.

Theorem ([W., 2010])
For $Q_{\text {bad }}=\exists x \exists y(R(\underline{x}, y) \wedge S(\underline{y}, x))$, the decision problem $\operatorname{CERTAINTY}\left(Q_{\text {bad }}\right)$ is in $\mathrm{P} \backslash$ FO (later, it was proven L -complete).

The Good, the Bad and the Ugly

Proposition
For $Q_{\text {good }}=\exists y(\operatorname{ACTORS}($ Pitt, $y, 60))$, the decision problem CERTAINTY $\left(Q_{\text {good }}\right)$ is in FO.

Theorem ([W., 2010])
For $Q_{\mathrm{bad}}=\exists x \exists y(R(\underline{x}, y) \wedge S(\underline{y}, x))$, the decision problem $\operatorname{CERTAINTY}\left(Q_{\mathrm{bad}}\right)$ is in $\mathrm{P} \backslash \mathrm{FO}$ (later, it was proven L-complete).

Theorem ([Chomicki and Marcinkowski, 2005])
For $Q_{\text {ugly }}=\exists x_{1} \exists x_{2} \exists z\left(\operatorname{ACTORS}\left(\underline{x_{1}}, \mathrm{M}, z\right) \wedge \operatorname{ACTORS}\left(\underline{x_{2}}, \mathrm{~F}, z\right)\right)$, the decision problem CERTAINTY $\left(Q_{\text {ugly }}\right)$ is coNP-complete.

Research Agenda

- We aim to go beyond the task of determining $\operatorname{CERTAINTY}(Q)$ for individual queries Q.

A query Q in the class \mathcal{C}
The computational complexty of

like FO, P, coNP-complete,

Research Agenda

- We aim to go beyond the task of determining CERTAINTY (Q) for individual queries Q.
- For "reasonable" classes \mathcal{C} of queries, write an algorithm for the following problem:

Complexity Classification Task
Input: A query Q in the class \mathcal{C}.
Task: The computational complexity of
CERTAINTY (Q), in terms of complexity classes like FO, P, coNP-complete,...

Which Query Classes Are "Reasonable"?

- The class of (Boolean) conjunctive queries (a.k.a. Select-Project-Join queries):

$$
\begin{equation*}
\exists \vec{u}\left(R_{1}\left(\underline{\vec{x}_{1}}, \overrightarrow{\vec{y}_{1}}\right) \wedge R_{2}\left(\underline{\vec{x}_{2}}, \overrightarrow{y_{2}}\right) \wedge \cdots \wedge R_{n}\left(\underline{\vec{x}_{n}}, \overrightarrow{y_{n}}\right)\right) . \tag{1}
\end{equation*}
$$

where each Q_{i} is of the form (1).

Which Query Classes Are "Reasonable"?

- The class of (Boolean) conjunctive queries (a.k.a. Select-Project-Join queries):

$$
\begin{equation*}
\exists \vec{u}\left(R_{1}\left(\underline{\vec{x}_{1}}, \overrightarrow{y_{1}}\right) \wedge R_{2}\left(\underline{\vec{x}_{2}}, \overrightarrow{y_{2}}\right) \wedge \cdots \wedge R_{n}\left(\underline{\vec{x}_{n}}, \overrightarrow{y_{n}}\right)\right) . \tag{1}
\end{equation*}
$$

- The class of disjunctions of conjunctive queries (a.k.a. UCQ queries):

$$
Q_{1} \vee Q_{2} \vee \cdots \vee Q_{m}
$$

where each Q_{i} is of the form (1).

Which Complexity Classes?

Classifying CERTAINTY (Q) in $\mathrm{P} /$ coNP-complete is Hard

The above conjecture implies
Rulatov's dichotomv theorem for
the conservative constraint
satisfaction problem (CSP).

Classifying CERTAINTY (Q) in $\mathrm{P} /$ coNP-complete is Hard

Conjecture
If Q is a disjunction of conjunctive queries, then $\operatorname{CERTAINTY}(Q)$ is in P or coNP-complete.

> Theorem ([Fontaine, 2015])
> The above conjecture implies
> Bulatov's dichotomy theorem for
> the conservative constraint
> satisfaction problem (CSP)

Classifying CERTAINTY (Q) in $\mathrm{P} /$ coNP-complete is Hard

Conjecture

If Q is a disjunction of conjunctive queries, then $\operatorname{CERTAINTY}(Q)$ is in P or coNP-complete.

Theorem ([Fontaine, 2015])
The above conjecture implies Bulatov's dichotomy theorem for the conservative constraint satisfaction problem (CSP).

Journal of Computer and System Sciences 82 (2016) 347-356

Conservative constraint satisfaction re-revisited
Andrei A. Bulatov ${ }^{1}$

Is it Easier for Conjunctive Queries?

Conjecture
If Q is of the form $\exists \vec{u}\left(R_{1}\left(\vec{x}_{1}, \vec{y}_{1}\right) \wedge \cdots \wedge R_{n}\left(\underline{\vec{x}_{n}}, \overrightarrow{y_{n}}\right)\right)$, then $\operatorname{CERTAINTY}(Q)$ is in P or coNP-complete.

Theorem ([Koutris and W., 2017]) The ahove coniecture holds under the assumption that $R_{f} \neq R_{j}$ whenever $i \neq j$ Somewhat later, if was proven that for every self-join-free $C Q Q$, CERTAINTY(Q) is either in FO, L-complete, or coNP-complete.

Is it Easier for Conjunctive Queries?

Conjecture

If Q is of the form $\exists \vec{u}\left(R_{1}\left(\underline{\vec{x}_{1}}, \vec{y}_{1}\right) \wedge \cdots \wedge R_{n}\left(\vec{x}_{n}, \vec{y}_{n}\right)\right)$, then $\operatorname{CERTAINTY}(Q)$ is in P or coNP-complete.

Theorem ([Koutris and W., 2017])
The above conjecture holds under the assumption that $R_{i} \neq R_{j}$ whenever $i \neq j$.
$\operatorname{CERTAINTY}(Q)$ is either in FO
\square
The above conjecture holds under the assumption that $n=2$.

Is it Easier for Conjunctive Queries?

Conjecture

If Q is of the form $\exists \vec{u}\left(R_{1}\left(\underline{\vec{x}_{1}}, \vec{y}_{1}\right) \wedge \cdots \wedge R_{n}\left(\vec{x}_{n}, \vec{y}_{n}\right)\right)$, then $\operatorname{CERTAINTY}(Q)$ is in P or coNP-complete.

Theorem ([Koutris and W., 2017])
The above conjecture holds under the assumption that $R_{i} \neq R_{j}$ whenever $i \neq j$.
Somewhat later, if was proven that for every self-join-free CQ Q, $\operatorname{CERTAINTY}(Q)$ is either in FO, L-complete, or coNP-complete.

Theorem ([Padmanabha et al., 2023])
The above conjecture holds under the assumption that $n=2$ The above conjecture holds for queries of the form

Is it Easier for Conjunctive Queries?

Conjecture

If Q is of the form $\exists \vec{u}\left(R_{1}\left(\vec{x}_{1}, \vec{y}_{1}\right) \wedge \cdots \wedge R_{n}\left(\underline{\vec{x}_{n}}, \overrightarrow{y_{n}}\right)\right)$, then CERTAINTY (Q) is in P or coNP-complete.

Theorem ([Koutris and W., 2017])
The above conjecture holds under the assumption that $R_{i} \neq R_{j}$ whenever $i \neq j$.
Somewhat later, if was proven that for every self-join-free CQ Q, $\operatorname{CERTAINTY}(Q)$ is either in FO, L-complete, or coNP-complete.

Theorem ([Padmanabha et al., 2023])
The above conjecture holds under the assumption that $n=2$.

Is it Easier for Conjunctive Queries?

Conjecture

If Q is of the form $\exists \vec{u}\left(R_{1}\left(\vec{x}_{1}, \vec{y}_{1}\right) \wedge \cdots \wedge R_{n}\left(\underline{x_{n}}, \overrightarrow{y_{n}}\right)\right)$, then
$\operatorname{CERTAINTY}(Q)$ is in P or coNP-complete.
Theorem ([Koutris and W., 2017])
The above conjecture holds under the assumption that $R_{i} \neq R_{j}$ whenever $i \neq j$.
Somewhat later, if was proven that for every self-join-free $C Q Q$, $\operatorname{CERTAINTY}(Q)$ is either in FO, L-complete, or coNP-complete.

Theorem ([Padmanabha et al., 2023])
The above conjecture holds under the assumption that $n=2$.
Theorem ([Koutris et al., 2021])
The above conjecture holds for queries of the form $\exists x_{1} \cdots \exists x_{n+1}\left(R_{1}\left(\underline{x_{1}}, x_{2}\right) \wedge R_{2}\left(\underline{x_{2}}, x_{3}\right) \wedge \cdots \wedge R_{n}\left(\underline{x_{n}}, x_{n+1}\right)\right)$.

Table of Contents

Motivation

Complexity of CERTAINTY (Q)

$\operatorname{CERTAINTY}(Q)$ in Linear Time (and in FO)

Alternative Semantics

Concluding Remarks

The Good Among the Good, the Bad and the Ugly

A directed graph, called attack graph, is defined for every conjunctive query.

The Good Among the Good, the Bad and the Ugly

A directed graph, called attack graph, is defined for every conjunctive query.

Theorem ([Koutris and W., 2017])
Let $Q=\exists \vec{u}\left(R_{1}\left(\underline{\vec{x}_{1}}, \overrightarrow{y_{1}}\right) \wedge \cdots \wedge R_{n}\left(\underline{\vec{x}_{n}}, \overrightarrow{y_{n}}\right)\right)$ with $R_{i} \neq R_{j}$ for $i \neq j$. Then,

- if Q's attack graph is acyclic, then CERTAINTY (Q) is in FO;
- if Q 's attack graph is cyclic, then CERTAINTY (Q) is L-hard.

Attack Graph

$$
\begin{aligned}
N^{+} & =\{v\} \\
P^{+} & =\{x\} \\
R_{1}^{+} & =\{y, x, z, r, u\} \\
R_{2}^{+} & =\{y, x, z, r, u\} \\
S^{+} & =\{y, x, u\} \\
U^{+} & =\{y, x, z, r\} \\
T^{+} & =\{x, z, y, u\} \\
W^{+} & =\{u, w\}
\end{aligned}
$$

S^{+}, e.g., is the closure of S^{\prime} s key w.r.t. all other FDs.
S can attack with $z \notin S^{+}$.

Attack Graph and (Consistent) First-Order Rewriting

We construct a first-order formula φ_{N} such that for every database:

$$
\varphi_{N} \text { is true in the database } \Longleftrightarrow Q \text { is true in every repair. }
$$

where $\varphi_{P}(v, x)$ is a rewriting of the conjunctive query whose atoms are the atoms of Q except $N(v, x)$, in which variables v and x are free.

Attack Graph and (Consistent) First-Order Rewriting

We construct a first-order formula φ_{N} such that for every database:

φ_{N} is true in the database $\Longleftrightarrow Q$ is true in every repair.

$$
\varphi_{N}:=\exists v\left(\exists x(N(\underline{v}, x)) \wedge \neg \exists x\left(N(\underline{v}, x) \wedge \neg \varphi_{P}(v, x)\right)\right),
$$

where $\varphi_{P}(v, x)$ is a rewriting of the conjunctive query whose atoms are the atoms of Q except $N(\underline{v}, x)$, in which variables v and x are free.
The empty query rewrites to true.

Attack Graph \neq Join Tree

The subgraph induced by atoms that contain x is not connected.

Attack Graph that Is a Join Tree

Moreover, every internal node V has zero indegree in the attack graph of the subquery rooted at $V(V \in\{P, S, U\})$. Such a join tree is called a Pair-Pruning Join Tree (PPJT) Yannakakis' algorithm extends to the inconsistent setting:

Attack Graph that Is a Join Tree

Moreover, every internal node V has zero indegree in the attack graph of the subquery rooted at $V(V \in\{P, S, U\})$. Such a join tree is called a Pair-Pruning Join Tree (PPJT).

Attack Graph that Is a Join Tree

Moreover, every internal node V has zero indegree in the attack graph of the subquery rooted at $V(V \in\{P, S, U\})$. Such a join tree is called a Pair-Pruning Join Tree (PPJT). Yannakakis' algorithm extends to the inconsistent setting:
Theorem ([Fan et al., 2023])
If Q has a PPJT, then CERTAINTY (Q) is in LIN (i.e., problems solvable in linear time).

Yannakakis+Pruning

$$
\begin{aligned}
T^{\text {join }}(x, z) & \leftarrow T(\underline{x, z}, r) \\
W^{\text {join }}(u) & \leftarrow W(\underline{(u, w})
\end{aligned}
$$

Yannakakis+Pruning

$$
\begin{aligned}
T^{\text {join }}(x, z) & \leftarrow T(\underline{x, z}, r) \\
W^{\text {join }}(u) & \leftarrow W(\underline{(u, w})
\end{aligned}
$$

Yannakakis+Pruning

$$
\begin{aligned}
S^{\text {join }}(x, y) & \leftarrow S(\underline{y}, x, z) \wedge \neg S^{\text {fadingkey }}(y) \\
S^{\text {fadingkey }}(y) & \leftarrow S(\underline{y}, x, z) \wedge S\left(\underline{y}, x^{\prime}, z\right) \wedge x \neq x^{\prime} \\
S^{\text {fadingkey }}(y) & \leftarrow S(\underline{y}, x, z) \wedge \neg T^{\text {join }}(x, z)
\end{aligned}
$$

$$
\begin{aligned}
T^{\text {join }}(x, z) & \leftarrow T(\underline{x, z}, r) \\
W^{\text {join }}(u) & \leftarrow W \underline{(u, w})
\end{aligned}
$$

$$
R_{i}^{\text {join }}(x, y) \leftarrow R_{i}(\underline{y}, x) \wedge \neg R_{i}^{\text {fadingkey }}(y)
$$

$$
R_{i}^{\text {fadingkey }}(y) \leftarrow R_{i}(\underline{y}, x) \wedge R_{i}\left(\underline{y}, x^{\prime}\right) \wedge x \neq x^{\prime}
$$

$$
(1 \leq i \leq 2)
$$

Yannakakis+Pruning

$$
\begin{aligned}
U^{\text {join }}(y) & \leftarrow U(\underline{y}, u) \wedge \neg U^{\text {fadingkey }}(y) \\
U^{\text {fadingkey }}(y) & \leftarrow U(\underline{y}, u) \wedge \neg W^{\text {join }}(u) \\
S_{\text {join }}(x, y) & \leftarrow S(\underline{y}, x, z) \wedge \neg S^{\text {fadingkey }}(y) \\
S^{\text {fadingkey }}(y) & \leftarrow S(\underline{y}, x, z) \wedge S\left(\underline{y}, x^{\prime}, z\right) \wedge x \neq x^{\prime} \\
S^{\text {fadingkey }}(y) & \leftarrow S(\underline{y}, x, z) \wedge \neg T^{\text {join }}(x, z)
\end{aligned}
$$

$$
\begin{aligned}
T^{\text {join }}(x, z) & \leftarrow T(\underline{x, z}, r) \\
W^{\text {join }}(u) & \leftarrow W(\underline{(u, w})
\end{aligned}
$$

$$
R_{i}^{\text {join }}(x, y) \leftarrow R_{i}(\underline{y}, x) \wedge \neg R_{i}^{\text {fadingkey }}(y)
$$

$$
R_{i}^{\text {fadingkey }}(y) \leftarrow R_{i}(\underline{y}, x) \wedge R_{i}\left(\underline{y}, x^{\prime}\right) \wedge x \neq x^{\prime}
$$

$$
(1 \leq i \leq 2)
$$

Yannakakis+Pruning

$$
\begin{aligned}
P^{\text {join }}(x) & \leftarrow P(\underline{x}, y) \wedge \neg P^{\text {fadingkey }}(x) \\
P^{\text {fadingkey }}(x) & \leftarrow P(\underline{x}, y) \wedge \neg U^{\text {join }}(y) \\
P^{\text {fadingkey }}(x) & \leftarrow P(\underline{x}, y) \wedge \neg S^{\text {join }}(x, y) \\
P^{\text {fadingkey }}(x) & \leftarrow P(\underline{x}, y) \wedge \neg R_{i}^{\text {join }}(x, y) \\
U^{\text {join }}(y) & \leftarrow U(\underline{y}, u) \wedge \neg U^{\text {fadingkey }}(y) \\
U^{\text {fadingkey }}(y) & \leftarrow U(\underline{y}, u) \wedge \neg W^{\text {join }}(u) \\
S^{\text {join }}(x, y) & \leftarrow S(\underline{y}, x, z) \wedge \neg S^{\text {fadingkey }}(y) \\
S^{\text {fadingkey }}(y) & \leftarrow S(\underline{y}, x, z) \wedge S\left(\underline{y}, x^{\prime}, z\right) \wedge x \neq x^{\prime} \\
S^{\text {fadingkey }}(y) & \leftarrow S(\underline{y}, x, z) \wedge \neg T^{\text {join }}(x, z)
\end{aligned}
$$

$$
\begin{aligned}
T^{\text {join }}(x, z) & \leftarrow T(\underline{x, z}, r) \\
W^{\text {join }}(u) & \leftarrow W(\underline{u, w})
\end{aligned}
$$

Yannakakis+Pruning

$$
T^{\mathrm{join}}(x, z) \leftarrow T(\underline{x, z}, r)
$$

$$
W^{\text {join }}(u) \leftarrow W(\underline{u, w})
$$

$$
\begin{aligned}
\text { Answer }(y \text { yes }) & \leftarrow N(\underline{v}, x) \wedge \neg N^{\text {fadingkey }}(v) \\
N^{\text {fadingkey }}(v) & \leftarrow N(\underline{v}, x) \wedge \neg P^{\text {join }}(x) \\
P^{\text {join }}(x) & \leftarrow P(\underline{x}, y) \wedge \neg P^{\text {fadingkey }}(x) \\
P^{\text {fadingkey }}(x) & \leftarrow P(\underline{x}, y) \wedge \neg U^{\text {join }}(y) \\
P^{\text {fadingkey }}(x) & \leftarrow P(\underline{x}, y) \wedge \neg S^{\text {join }}(x, y) \\
P^{\text {fadingkey }}(x) & \leftarrow P(\underline{x}, y) \wedge \neg R_{i}^{\text {join }}(x, y) \\
U^{\text {join }}(y) & \leftarrow U(\underline{y}, u) \wedge \neg U^{\text {fadingkey }}(y) \\
U^{\text {fadingkey }}(y) & \leftarrow U(\underline{y}, u) \wedge \neg W^{\text {join }}(u) \\
S^{\text {join }}(x, y) & \leftarrow S(\underline{y}, x, z) \wedge \neg S^{\text {fadingkey }}(y) \\
S^{\text {fadingkey }}(y) & \leftarrow S(\underline{y}, x, z) \wedge S\left(\underline{y}, x^{\prime}, z\right) \wedge x \neq x^{\prime} \\
S^{\text {fadingkey }}(y) & \leftarrow S(\underline{y}, x, z) \wedge \neg T^{\text {join }}(x, z) \\
R_{i}^{\text {join }}(x, y) & \leftarrow R(\underline{y}, x) \wedge \neg R_{i}^{\text {fadingkey }}(y) \\
R_{i}^{\text {fadingkey }}(y) & \leftarrow R_{i}(\underline{y}, x) \wedge R_{i}\left(\underline{y}, x^{\prime}\right) \wedge x \neq x^{\prime} \\
(1 \leq i \leq 2) &
\end{aligned}
$$

Observation Regarding Correctness

R_{i}-blocks of size ≥ 2 can be ignored. For example,

$$
R_{1}\left|\begin{array}{cc}
\underline{y} & x \\
\hline a & c_{1} \\
\underline{a} & c_{2}
\end{array} \quad R_{2}\right| \begin{array}{ll}
\underline{y} & x \\
\hline a & c_{1} \\
\underline{a} & -\underline{c_{2}} \\
\hline- & -
\end{array}
$$

To construct a repair that falsifies the query, pick $R_{1}\left(\underline{a}, c_{i}\right)$ and $R_{2}\left(\underline{a}, c_{j}\right)$ such that $c_{i} \neq c_{j}$.

LinCQA

- LinCQA is a system that takes as input any query with a PPJT and outputs rewritings in both SQL and non-recursive Datalog with negation.
- https://github.com/xiatingouyang/LinCQA/
- See [Fan et al., 2023] for experiments.

Table of Contents

Motivation

Complexity of CERTAINTY (Q)

CERTAINTY (Q) in Linear Time (and in FO)

Alternative Semantics
Range Consistent Query Answering
Counting Variant of CERTAINTY (Q)

Concluding Remarks

Table of Contents

Motivation

Complexity of CERTAINTY (Q)

CERTAINTY (Q) in Linear Time (and in FO)

Alternative Semantics
Range Consistent Query Answering
Counting Variant of CERTAINTY(Q)

Concluding Remarks

Range Consistent Query Answering [Arenas et al., 2001]

For queries returning numbers instead of Booleans.
For ease of presentation, all queries return a single number.

- The lowest answer across all repairs is $\operatorname{MAX}(\{48,52\})=52$;
- the greatest answer across all repairs is $\operatorname{MAX}(\{48,59,53\})=59$;
\rightarrow the interval $[52,59]$ is called the range consistent answer

Range Consistent Query Answering [Arenas et al., 2001]

For queries returning numbers instead of Booleans.
For ease of presentation, all queries return a single number.

ACTORS

Name	Gender	Age
Jolie	F	48
$\overline{\text { Pitt }}$	F	59
Pitt	M	60
\bar{R}	F	52
Reeves	F	53

Get the age of the oldest actress:

$$
\operatorname{MAX}(z) \leftarrow \operatorname{ACTORS}(\underline{x}, F, z)
$$

Range Consistent Query Answering [Arenas et al., 2001]

For queries returning numbers instead of Booleans.
For ease of presentation, all queries return a single number.

ACTORS		
Name	Gender	Age
Jolie	F	48
$\overline{\text { Pitt }}$	F	
Pitt	M	
\bar{R}	F	
Reeves	F	

Get the age of the oldest actress:

$$
\operatorname{MAX}(z) \leftarrow \operatorname{ACTORS}(\underline{x}, F, z)
$$

- The lowest answer across all repairs is $\operatorname{MAX}(\{48,52\})=52$;
- the greatest answer across all repairs is $\operatorname{MAX}(\{48,59,53\})=59$;
- the interval $[52,59]$ is called the range consistent answer.

Formal Setting

- Numerical terms $f()$ expressible in the (safe) rule format

$$
\begin{equation*}
\operatorname{AGG}(r) \leftarrow R_{1}\left(\underline{\vec{x}_{1}}, \overrightarrow{\hat{y}_{1}}\right) \wedge R_{2}\left(\underline{\vec{x}_{2}}, \overrightarrow{y_{2}}\right) \wedge \cdots \wedge R_{n}\left(\underline{\vec{x}_{n}}, \vec{y}_{n}\right), \tag{2}
\end{equation*}
$$

where r is either a numerical variable or a constant, and AGG is an aggregate operator (e.g., MAX, MIN, SUM, COUNT, AVG); assume $R_{i} \neq R_{j}$ if $i \neq j$.

- Given a database instance, let $f^{+}()$and $f^{-}()$be, respectively, the greatest and smallest values of $f()$ across all repairs.

Formal Setting

- Numerical terms $f()$ expressible in the (safe) rule format

$$
\begin{equation*}
\operatorname{AGG}(r) \leftarrow R_{1}\left(\underline{\vec{x}_{1}}, \overrightarrow{y_{1}}\right) \wedge R_{2}\left(\underline{\vec{x}_{2}}, \overrightarrow{y_{2}}\right) \wedge \cdots \wedge R_{n}\left(\underline{\vec{x}_{n}}, \vec{y}_{n}\right), \tag{2}
\end{equation*}
$$

where r is either a numerical variable or a constant, and AGG is an aggregate operator (e.g., MAX, MIN, SUM, COUNT, AVG); assume $R_{i} \neq R_{j}$ if $i \neq j$.

- Given a database instance, let $f^{+}()$and $f^{-}()$be, respectively, the greatest and smallest values of $f()$ across all repairs.
- Aggregate logic $\mathcal{L}_{\text {aggr }}$ [Hella et al., 2001]: FOL + aggregation.

Formal Setting

- Numerical terms $f()$ expressible in the (safe) rule format

$$
\begin{equation*}
\operatorname{AGG}(r) \leftarrow R_{1}\left(\underline{\vec{x}_{1}}, \overrightarrow{y_{1}}\right) \wedge R_{2}\left(\underline{\vec{x}_{2}}, \overrightarrow{y_{2}}\right) \wedge \cdots \wedge R_{n}\left(\underline{\vec{x}_{n}}, \overrightarrow{y_{n}}\right) \tag{2}
\end{equation*}
$$

where r is either a numerical variable or a constant, and AGG is an aggregate operator (e.g., MAX, MIN, SUM, COUNT, AVG); assume $R_{i} \neq R_{j}$ if $i \neq j$.

- Given a database instance, let $f^{+}()$and $f^{-}()$be, respectively, the greatest and smallest values of $f()$ across all repairs.
- Aggregate logic $\mathcal{L}_{\text {aggr }}$ [Hella et al., 2001]: FOL + aggregation.
- Question in [Fuxman, 2007] and [Dixit and Kolaitis, 2022]:

When can $f^{+}()$and $f^{-}()$be expressed in $\mathcal{L}_{\text {aggr }}$?

1. $f^{+}()$and $f^{-}()$are not expressible in $\mathcal{L}_{\text {aggr }}$ if the attack graph of (2) is cyclic (because queries in $\mathcal{L}_{\text {aggr }}$ are Hanf-local).
2. Does the converse hold?

Rewriting Example

$$
\operatorname{MAX}(z) \leftarrow \operatorname{ACTORS}(\underline{x}, F, z)
$$

- Upper bound rewriting:

$$
\mathrm{UB}(\operatorname{MAX}(z)) \leftarrow \operatorname{ACTORS}(\underline{x}, \mathrm{~F}, z)
$$

- Lower bound rewriting:
$\operatorname{POSSIBLE} \mathrm{M}(x) \leftarrow \operatorname{ACTORS}(\underline{x}, \mathrm{M}, z)$
CERTAIN_F $(x, z) \leftarrow \operatorname{ACTORS}(\underline{x}, \mathrm{~F}, z), \neg$ POSSIBLE $M(x)$
$\mathrm{L}(x, \operatorname{MIN}(z)) \leftarrow$ CERTAIN_F (\underline{x}, z)
$\mathrm{LB}(\operatorname{MAX}(z)) \leftarrow \mathrm{L}(x, z)$

Table of Contents

Motivation

Complexity of CERTAINTY (Q)

CERTAINTY (Q) in Linear Time (and in FO)

Alternative Semantics
Range Consistent Query Answering
Counting Variant of CERTAINTY (Q)

Concluding Remarks

Counting

Given a Boolean query Q, define the following counting problem:

Problem $\# C E R T A I N T Y(Q)$

Input: A database instance that may violate primary-key constraints.
Question: How many repairs of satisfy Q ?
\qquad

Counting

Given a Boolean query Q, define the following counting problem:

Problem \sharp CERTAINTY (Q)

Input: A database instance that may violate primary-key constraints.
Question: How many repairs of satisfy Q ?
Complexity Classification Task
Input: A self-join-free Boolean conjunctive query Q.
Task: Determine lower and upper complexity bounds on the complexity of \sharp CERTAINTY (q), in terms of common complexity classes like FP and $\sharp P$.

Counting

Given a Boolean query Q, define the following counting problem:

Problem $\sharp C E R T A I N T Y(Q)$
 Input: A database instance that may violate primary-key constraints.
 Question: How many repairs of satisfy Q ?

Complexity Classification Task

Input: A self-join-free Boolean conjunctive query Q.
Task: Determine lower and upper complexity bounds on the complexity of \sharp CERTAINTY (q), in terms of common complexity classes like FP and $\sharp P$.

- Solved in [Maslowski and W., 2013] and generalized to FDs in [Calautti et al., 2022].
- Same problem as query answering in block-independent disjoint (BID) probabilistic databases under the restriction that in every block \mathbf{b}, every tuple has probability $\frac{1}{|\mathbf{b}|}$.

BID Databases

Every input to CERTAINTY (Q) is a block-independent disjoint database without probabilities (or with uniform probabilities).

喚 Inconsistency is not only a burden, but also a chance. ${ }^{1}$

Researchers:			
$t_{1}^{1}$$t_{1}^{2}$$t_{1}^{3}$$t_{2}^{1}$$t_{3}^{1}$$t_{3}^{2}$$t_{4}^{1}$$t_{4}^{2}$	Name	Affiliation	P
	Fred	U. Washington	$p_{1}^{1}=0.3$
		U. Wisconsin	$p_{1}^{2}=0.2$
		Y! Research	$p_{1}^{3}=0.5$
	Sue	U. Washington	$p_{2}^{1}=1.0$
	John	U. Wisconsin	$p_{3}^{1}=0.7$
		U. Washington	$p_{3}^{2}=0.3$
	Frank	Y! Research	$p_{4}^{1}=0.9$
		M. Research	$p_{4}^{2}=0.1$

[^0]
Table of Contents

Motivation
Complexity of CERTAINTY (Q)
CERTAINTY (Q) in Linear Time (and in FO)
Alternative Semantics
Concluding Remarks

Concluding Remarks

Consistent Query Answering is an active research area since [Arenas et al., 1999]:

- Database repairing w.r.t. different classes of constraints
- Database repairing and data exchange
- Database repairing and approximations
- Database repairing and preferences
- Database repairing and implementations
- Database repairing and database management systems
- Consistent query answering for queries with negation
- Consistent query answering in description logics
- Consistent query answering over graph databases
- ...

RECORD

Current Issue Previous Issues Info for Authors Recors

Database Principles

Foundations of Query Answering on Inconsistent Databases
Jef Wijsen
Available in: PDF
Published in September 2019 (Vol. 48 No.3)

Communications of the ACM, March 2024

research

Deploying possible wortd semantics and the
challenge of computing the certain answers to
queries.

Thanks!

FYI, Brad Pitt celebrated his 60th birthday on December 18, 2023.

References I

Arenas, M., Bertossi, L. E., and Chomicki, J. (1999).
Consistent query answers in inconsistent databases.
In PODS, pages 68-79. ACM Press.

Arenas, M., Bertossi, L. E., and Chomicki, J. (2001).
Scalar aggregation in fd-inconsistent databases.
In ICDT, volume 1973 of Lecture Notes in Computer Science, pages 39-53. Springer.

Calautti, M., Livshits, E., Pieris, A., and Schneider, M. (2022).
Counting database repairs entailing a query: The case of functional dependencies.
In PODS, pages 403-412. ACM.
Chomicki, J. and Marcinkowski, J. (2005).
Minimal-change integrity maintenance using tuple deletions.
Inf. Comput., 197(1-2):90-121.
Dalvi, N. N., Ré, C., and Suciu, D. (2009).
Probabilistic databases: diamonds in the dirt.
Commun. ACM, 52(7):86-94.

Dixit, A. A. and Kolaitis, P. G. (2022).
Consistent answers of aggregation queries via SAT.
In ICDE, pages 924-937. IEEE.
Fan, Z., Koutris, P., Ouyang, X., and Wijsen, J. (2023).
LinCQA: Faster consistent query answering with linear time guarantees.
Proc. ACM Manag. Data, 1(1):38:1-38:25.

Fontaine, G. (2015).
Why is it hard to obtain a dichotomy for consistent query answering?
ACM Trans. Comput. Log., 16(1):7:1-7:24.

References II

Fuxman, A. (2007).
Efficient query processing over inconsistent databases.
PhD thesis, University of Toronto.
Hella, L., Libkin, L., Nurmonen, J., and Wong, L. (2001).
Logics with aggregate operators.
J. ACM, 48(4):880-907.

Kern-Isberner, G. and Lukasiewicz, T. (2017).
Many facets of reasoning under uncertainty, inconsistency, vagueness, and preferences: A brief survey. KI, 31(1):9-13.

Koutris, P., Ouyang, X., and Wijsen, J. (2021).
Consistent query answering for primary keys on path queries.
In PODS, pages 215-232. ACM.
Koutris, P. and W., J. (2017).
Consistent query answering for self-join-free conjunctive queries under primary key constraints.
ACM Trans. Database Syst., 42(2):9:1-9:45.

Maslowski, D. and W., J. (2013).
A dichotomy in the complexity of counting database repairs.
J. Comput. Syst. Sci., 79(6):958-983.

Padmanabha, A., Segoufin, L., and Sirangelo, C. (2023).
A dichotomy in the complexity of consistent query answering for two atom queries with self-join. CoRR, abs/2309.12059.
W., J. (2010).

A remark on the complexity of consistent conjunctive query answering under primary key violations.
Inf. Process. Lett., 110(21):950-955.

[^0]: ${ }^{1}$ Inspired by [Kern-Isberner and Lukasiewicz, 2017]. The image is from [Dalvi et al., 2009].

