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CQA Started at ACM PODS 1999 [ABC03]
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Example (Database repairs and Consistent Query Answers (CQA))

Σ =
{

TAUGHT -BY : {Course} → {Teacher ,Semester}
}

TAUGHT -BY Course Teacher Semester
CS402 D. Maier Fall
CS402 J. Ullman Fall

Consistency can be restored by deleting either the first or the last tuple.
We thus find two repairs, both of which are equally “good.”

How shall we answer queries?
CQA: “Intersect query answers on all repairs.”

Courses taught in the Fall semester?

Consistent answer is {CS402}.
Courses taught by D. Maier?

Consistent answer is ∅.
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Consistent Query Answering

How to answer a query q on a database db that is inconsistent w.r.t.
a set Σ of constraints?
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Example (CQA)

Σ =
{

TAUGHT -BY : {Course} → {Teacher ,Semester}
}

TAUGHT -BY Course Teacher Semester
CS402 D. Maier Fall
CS402 J. Ullman Fall

Courses taught by D. Maier?

q = {x | ∃z TAUGHT -BY (x , ‘D. Maier’, z)}

Q = {x | ∃z TAUGHT -BY (x , ‘D. Maier’, z)∧
¬∃y∃z (TAUGHT -BY (x , y , z) ∧ (y ̸= ‘D. Maier’))}
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CQA versus Data Cleaning

Data cleaning is often a long and expensive process. Queries are
subsequently posed against the cleaned database.

CQA returns sound (but maybe incomplete) query answers without
the need for actual cleaning or repairing.
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Database Instances

The following definitions are relative to:

a relational schema (= finite set of relation names with associated
arities), and

a finite set Σ of integrity constraints (= first-order logic sentences,
mostly of syntactically restricted forms, called dependencies).

A database instance db (or simply database) interprets every k-ary relation
name R in the schema by a finite k-ary relation, denoted Rdb.

If a⃗ ∈ Rdb, we also say R(a⃗) ∈ db, considering a database as a set of facts.

Under the named perspective, every relation name R is associated with a
finite (and linearly ordered) set sort(R) of attributes.
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Database Repairs

A database db is consistent if db |= Σ.

A repair of a (possibly inconsistent) database db is a consistent database
that differs from db in a minimal way (which will be defined later).

Intuitively, we can view each repair as a possible world, which brings us in
the realm of incomplete databases [IJ84], [AHV95, Chapter 19].

Given a database db, the consistent answer to a first-order query
q(x1, . . . , xn) is the set of tuples (a1, . . . , an) such that every repair of db
satisfies q(a1, . . . , an).

From an incomplete database viewpoint, consistent answers are certain
answers.
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Motivation from the Alice Book [AHV95]
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Example (Database repairs)

Let sort(R) = {A,B} and Σ = {R : A → B}.
The following relation r has 2n =

(√
2
)|r |

repairs under all existing repair
notions (see later).

r A B
1 a
1 b
2 a
2 b
...

n a
n b
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Functional Dependency (FD)

Syntax: R : X → Y with X ,Y ⊆ sort(R).

Semantics: db satisfies R : X → Y if for all s, s ′ ∈ Rdb,
if s[X ] = s ′[X ], then s[Y ] = s ′[Y ].

A key dependency is an FD R : X → Y with Y = sort(R).
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Inclusion Dependency (IND)

Syntax: R[A1,A2, . . . ,Am] ⊆ S [B1,B2, . . . ,Bm]

R, S are (possibly identical) relation names;
A1, . . . ,Am is a sequence of distinct attributes of sort(R);
B1, . . . ,Bm is a sequence of distinct attributes of sort(S).

Semantics: satisfied by a database db if for every s ∈ Rdb, there exists
some s ′ ∈ Rdb such that for every i ∈ {1, . . . ,m},
s(Ai ) = s ′(Bi ).
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Tuple-Generating Dependency (tgd)

A (constant-free) database atom is an expression R(x1, . . . , xk) where R is
a k-ary relation name and x1, . . . , xk are variables, not necessarily distinct.

Syntax of tgd: ∀x⃗ (φ(x⃗) → ∃y⃗ ψ(x⃗ , y⃗))
φ and each ψ are conjunctions of database atoms;
φ is not the empty conjunction (and thus the empty
database satisfies every tgd);
every variable in x⃗ appears in φ (but not necessarily
in ψ(x⃗ , y⃗)).

Specializations:

A tgd without existentially-quantified variables is called full.

A LAV tgd is a tgd in which φ(x⃗) is a single database atom.
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Examples

Example (Full tgd)

The binary relation R is transitive:
∀x∀y∀z ((R(x , y) ∧ R(y , z)) → R(x , z))

Straightforward to chase, with termination.

Example (Non-full tgd)

Every path of length 2 extends to a path of length 4:
∀x∀y∀z ((R(x , y) ∧ R(y , z)) → ∃u∃w (R(z , u) ∧ R(u,w)))

Not a LAV, because the left-hand is not a lonely atom.

Example (LAV)

∀y∀z (R(y , z) → ∃u∃w (R(z , u) ∧ R(u,w)))
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Universal Constraint (UC)

Syntax: ∀x⃗ (R1(x⃗1) ∧ · · · ∧ Rn(x⃗n) ∧ β(x⃗) → S1(y⃗1) ∨ · · · ∨ Sm(y⃗m))

β is a Boolean combination of equalities;
every variable in x⃗ appears in some x⃗i (but not
necessarily in some y⃗j).

Specializations:

Denial constraint if m = 0:

∀x⃗ (R1(x⃗1) ∧ · · · ∧ Rn(x⃗n) ∧ β(x⃗) → false)

∀x⃗ (R1(x⃗1) ∧ · · · ∧ Rn(x⃗n) → ¬β(x))

¬∃x⃗ (R1(x⃗1) ∧ · · · ∧ Rn(x⃗n) ∧ β(x⃗))
Egd if m = 0 and β is the negation of an equality:

∀x⃗ (R1(x⃗1) ∧ · · · ∧ Rn(x⃗n) ∧ ¬ (xi = xj) → false)

∀x⃗ (R1(x⃗1) ∧ · · · ∧ Rn(x⃗n) → xi = xj)
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Example

Example (Denial Constraint)

EMP Name Rank Sal
Ed clerk 28
Tim clerk 30
An boss 40

No clerk earns more than any boss.

¬∃x1∃x2∃r1∃r2∃s1∃s2

 EMP(x1, r1, s1)
∧ EMP(x2, r2, s2)
∧ ((r1 = ‘clerk’) ∧ (r2 = ‘boss’) ∧ (s1 > s2))
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Overview

w.a. = weakly acyclic
d.i. = domain independent

FO

LAV tgd w.a. tgds

full tgd
GAV tgd

d.i. universal Horn

UC

key

denialtgd

egd

FDIND

JD

MVD

The figure says, for example, that every set of FDs is logically equivalent to a set of egds.
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Minimal Difference (or Maximal Similarity)

We proceed in two steps:

1 For any arbitrary database db, define a binary relation ⪯db on
databases. Informally, r ⪯db s means that

r is more or equally similar to db than s.

2 Let Σ be a set of integrity constraints and db a database.
We say that a database r is a repair of db with respect to Σ if

r |= Σ, and
for every database s, if s ≺db r, then s ̸|= Σ.1

To guarantee the existence of repairs, it suffices to require that ≺db be
acyclic.

1r ≺db s if (r ⪯db s and not s ⪯db r).
Jef Wijsen (University of Mons, Belgium) CQA
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Different Repair Notions

For ⊕-repairs (Symmetric difference repairs), define:

r ⪯db s if r ⊕ db ⊆ s⊕ db
or, equivalently, s ∩ db ⊆ r ⊆ s ∪ db

In this case, ⪯db is a partial order (henceforth denoted ⪯⊕
db).

For C-repairs (Cardinality repairs), define:

r ⪯db s if |r ⊕ db| ≤ |s⊕ db|.
In this case, ⪯db is a preorder2 (henceforth denoted ⪯C

db).

. . .

Furthermore,

a subset-repair is a ⊕-repair that is included in db; and

a superset-repair is a ⊕-repair that includes db.

� For denial constraints, every ⊕-repair is a subset-repair.
2A preorder is reflexive and transitive.
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Examples of ⊕-Repair and C-Repair

Inconsistent database

EMP Name Rank Sal
db Ed clerk 28

Tim clerk 30
An boss 20
An clerk 40

EMP : Name → Rank,Sal

∀∗
((

EMP(x1, ‘clerk’, s1)
∧EMP(x2, ‘boss’, s2)

)
→ s1 ≤ s2

)

Two symmetric difference repairs

EMP Name Rank Sal
r Ed clerk 28

Tim clerk 30
An clerk 40

and
EMP Name Rank Sal
s An boss 20

Only one cardinality repair

s is not a C-repair because r ≺C
db s.
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An boss 20
An clerk 40

EMP : Name → Rank,Sal

∀∗
((

EMP(x1, ‘clerk’, s1)
∧EMP(x2, ‘boss’, s2)

)
→ s1 ≤ s2

)
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Example (Inspired by [Ull88, p. 422])

ENROLLED : Student,Prerequisite → Year

∀∗
((

ENROLLED(c , s, p, y)
∧ ENROLLED(c , s ′, p′, y ′)

)
→ ∃z ENROLLED(c, s, p′, z)

)
ENROLLED Course Student Prerequisite Year

CS402 Jones CS311 1988 (†)
CS402 Jones CS311 1989 (‡)
CS402 Jones CS401 1989

CS402 Smith CS401 1989

The tuples † and ‡ together falsify the FD.

If CS311 is a prerequisite of CS402, then Smith must have taken it.

Every ⊕-repair can be obtained in one of the following ways:

1 Delete both † and ‡.
2 Delete either † or ‡, and also delete the tuple about Smith.

3 Delete either † or ‡, and insert (CS402, Smith, CS311, 19xx) for some
year 19xx.
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Adapted from Example 3.3 in [HW22]

∀x∀y
(
R(x , y) → ∃z S(y , z)

)
and ∀y∀z

(
S(y , z) → T (z)

)
.

db =
R x y

a b
S y z

b c

T z

r =
R x y

a b
S y z

b c

T z
c

s =
R x y

a b
S y z

b ⊥
T z

⊥

r ⊕ db = {T (c)}
s⊕ db = {S(b, c),S(b,⊥),T (⊥)}

Note that r ⊕ db and s⊕ db are not comparable by set inclusion.
This implies, in particular, r ̸⪯⊕

db s.

Jef Wijsen (University of Mons, Belgium) CQA
EDBT-Intended Summer School 2022

33 / 102



Adapted from Example 3.3 in [HW22]

∀x∀y
(
R(x , y) → ∃z S(y , z)

)
and ∀y∀z

(
S(y , z) → T (z)

)
.

db =
R x y

a b
S y z

b c

T z

r =
R x y

a b
S y z

b c

T z
c

s =
R x y

a b
S y z

b ⊥
T z

⊥

r ⊕ db = {T (c)}
s⊕ db = {S(b, c),S(b,⊥),T (⊥)}

Note that r ⊕ db and s⊕ db are not comparable by set inclusion.
This implies, in particular, r ̸⪯⊕

db s.

Jef Wijsen (University of Mons, Belgium) CQA
EDBT-Intended Summer School 2022

33 / 102



Adapted from Example 3.3 in [HW22]

∀x∀y
(
R(x , y) → ∃z S(y , z)

)
and ∀y∀z

(
S(y , z) → T (z)

)
.

db =
R x y

a b
S y z

b c

T z

r =
R x y

a b
S y z

b c

T z
c

s =
R x y

a b
S y z

b ⊥
T z

⊥

r ⊕ db = {T (c)}
s⊕ db = {S(b, c),S(b,⊥),T (⊥)}

Note that r ⊕ db and s⊕ db are not comparable by set inclusion.
This implies, in particular, r ̸⪯⊕

db s.

Jef Wijsen (University of Mons, Belgium) CQA
EDBT-Intended Summer School 2022

33 / 102



Loosely Sound Semantics [CLR03]

Maximize the set of preserved database facts (i.e., minimize deletions),
while considering that insertions are harmless.

For loosely sound semantics, define:

r ⪯db s if r ∩ db ⊇ s ∩ db.

In this case, ⪯db is a preorder.

Open World Assumption: Add as much as you like.

� Having repairs r and r ⊎ ∆, with ∆ a “superfluous” addition, is
harmless for CQA to conjunctive queries q, because

q(r) ∩ q(r ∪∆) = q(r).
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Another Natural but Unexplored (?) Repair Notion

Loosely Sound Semantics + “minimal insertions”

For max-intersection-repairs, define:
r ⪯db s if either

r ∩ db ⊋ s ∩ db; or
both r ∩ db = s ∩ db and r ⊆ s.

In this case, ⪯db is a partial order.

Proposition

Every max-intersection-repair is a ⊕-repair.

� For tgds, every max-intersection-repair is a superset-repair.
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Example (Max-intersection-repair)

ENROLLED Course Student Prerequisite Year
CS402 Jones CS311 1988 (†)
CS402 Jones CS311 1989 (‡)
CS402 Jones CS401 1989
CS402 Smith CS401 1989

Every max-intersection-repair can be obtained as follows:

Delete either † or ‡, and insert (CS402, Smith, CS311, 19xx) for some
year 19xx.
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Example (Information loss in tuple-based repairing)

Σ =

{
TAUGHT -BY : Course → Teacher ,
TAUGHT -BY : Teacher ,Hour → Course

}
TAUGHT -BY Course Teacher Hour

db CS402 D. Maier Mon. 10am
CS402 J. Ullman Fri. 10am

TAUGHT -BY Course Teacher Hour
r CS402 D. Maier Mon. 10am

TAUGHT -BY Course Teacher Hour
How about s? CS402 D. Maier Mon. 10am

CS402 D. Maier Fri. 10am

s ̸≺db r for all the previously proposed tuple-based preorders ⪯db.

Yet one may feel that s is “better” than r, because it also preserves
∃x TAUGHT -BY (CS402, x , Fri. 10am).

See [Wij05] for a logical approach to value-based repairing.
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Homomorphism-based Repairs

Example

db Name Rank Sal
Ed clerk 28
Tim clerk 30
An boss 20
An clerk 40

rep Name Rank Sal
Ed clerk 28
Tim clerk 30
An boss 40

glb(rep,db) Name Rank Sal
Ed clerk 28
Tim clerk 30
An boss y
An x 40

rep ∩ db Name Rank Sal
Ed clerk 28
Tim clerk 30
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Repairing Numerical Attributes

Assumptions

Primary keys are satisfied and immutable.

Inconsistencies in numerical data.

Inconsistent numerical data

∀x∀y∀z (EMP(x , y , z) ∧ (y < 5) → (z ≤ 6000))

EMP Emp Status Sal

Ed 2 6100
Tim 4 9000

Two approaches

Update Based [FFP10]

Least Square Fixes [BBFL08]
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Update Based [FFP10]

Principle “update based”

r is preferred to s if it requires updating a smaller set of values (in
terms of set inclusion or cardinality).

The actual new values after update do not matter.

Update based

∀x∀y∀z (EMP(x , y , z) ∧ (y < 5) → (z ≤ 6000))

EMP Emp Status Sal

t1 Ed 2 6100
t2 Tim 4 9000

;

Emp Status Sal

Ed 8 6100
Tim 4 1000

The atomic updates are (t1,Status, ‘8’) and (t2, Sal , ‘1000’).
The set of updated values is {(t1,Status), (t2, Sal)}.
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Least Square Fixes [BBFL08]

Principle “least square fixes”

r is preferred to s if the distance between r and db is smaller than the
distance between s and db.

Least square fixes

∀x∀y∀z (EMP(x , y , z) ∧ (y < 5) → (z ≤ 6000))

EMP Emp Status Sal

Ed 2 6100
Tim 4 9000

;

Emp Status Sal

Ed 2 6000
Tim 5 9000

Distance for Ed-tuple: wStatus(2− 2)2 + wSal(6100− 6000)2

Distance for Tim-tuple: wStatus(4− 5)2 + wSal(9000− 9000)2

Global distance: Σ
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Comparison Repairing Numercial Attributes

Repairs are different in both approaches.

Comparison

∀x∀y∀z (ECTS(x , y , z) → (y + z ≥ 120))

ECTS SID Year1 Year2
Ed 68 60
Tim 59 59

;

SID Year1 Year2
Ed 68 60
Tim 60 60

This would not be a prefered repair in the update based approach.
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Data Complexity of Repair Checking

Definition (Repair checking)

For a finite set Σ of integrity constraints, ⊕-RC(Σ) is the following
problem:

INSTANCE: Databases db and r (over a fixed schema).

QUESTION: Is r a ⊕-repair of db?

Definition

Let IC be a class of integrity constraints (for example, FDs, INDs. . . ).
Let C be a complexity class. The ⊕-repair checking problem for IC is said
to be

Upper bound: in C if for every finite subset Σ of IC , ⊕-RC(Σ) is in C.

Upper+Lower bound: C-complete if it is in C and there exists a finite
subset Σ of IC such that ⊕-RC(Σ) is C-complete.
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Recall of Complexity Classes

FO, the class of decision problems (in this case, sets of structures) that can
be defined in first-order logic (descriptive complexity).

L, the class of decision problems that can be solved in deterministic
logarithmic space.

P, the class of decision problems that can be solved in deterministic
polynomial time.

NP, the class of decision problems whose “yes” instances have succinct
certificates that can be verified in deterministic polynomial time.

coNP, the class of decision problems whose “no” instances have succinct
disqualifications that can be verified in deterministic polynomial time.

FP, the class of function problems that can be solved in deterministic
polynomial time.

♯P, the class of counting problems associated with decision problems in NP.
Given an instance of a decision problem in NP, the associated counting
problem instance asks to determine the number of succinct certificates of its
being a “yes” instance.
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Complexity of ⊕-Repair Checking

† in L if weakly acyclic
‡ P-complete

in L in P coNP-c

FO

LAV tgd† w.a. tgds

full tgd‡

UC

key

denialtgd

egd

FDIND
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Proposition ([AK09])

If Σ is a finite set of first-order constraints, then ⊕-RC(Σ) is in coNP.

Proof sketch.

Let Σ be a finite set of first-order constraints. Assume that (db, r) is a
“no”-instance of ⊕-RC(Σ).

If r ̸|= Σ, which can be tested in polynomial time, then r cannot be a
repair.

Assume r |= Σ from here on. Then, there is a repair s of db such that
s ≺⊕

db r. Consequently, s ⊆ r ∪ db, and hence s is of polynomial size.
It can be checked in polynomial time that s⊕ db ⊊ r⊕ db and s |= Σ.

It is now correct to conclude that “no”-instances have “succinct
disqualifications.”
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Proposition ([AK09])

If Σ is a finite set of denial constraints, then ⊕-RC(Σ) is in L.

Proof sketch.

Let Σ be a finite set of denial constraints. Let (db, r) be an instance of
⊕-RC(Σ). Note that every ⊕-repair w.r.t. denial constraints is a
subset-repair. The following are equivalent:

1 r is a ⊕-repair; and

2 r |= Σ, r ⊆ db, and for every A ∈ db \ r, we have that r ∪ {A} is
inconsistent. These conditions can be checked in logarithmic space.
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Open Challenges

Combining Classes of Integrity Constraints

Most real-life databases have constraints from different classes. Therefore,
it seems normal to consider unions of classes of integrity constraints.

Proposition

The ⊕-repair checking problem for FDs and INDs taken together is
coNP-complete.

Fine-Grained Complexity Classification

Assume that ⊕-repair checking for a class IC is coNP-complete. It is
normal to ask whether the set

{⊕-RC(Σ) | Σ is a finite subset of IC}

exhibits an effective complexity dichotomy between P and
coNP-complete. Such questions remain largely unanswered.
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Conjunctive Queries

Conjunctive queries are first-order formulas of the form

∃x⃗ (R1(x⃗1) ∧ · · · ∧ Rn(x⃗n)) .

Such conjunctive query is self-join-free if Ri ̸= Rj whenever i ̸= j .

A conjunctive query is Boolean if it contains no free variables.
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Data Complexity of Consistent Conj. Query Answering

Definition (Consistent query answering)

For a finite set Σ of integrity constraints and a Boolean query q, we define
⊕-CQA(Σ, q) as the following problem:

INSTANCE: Database db (over a fixed schema).

QUESTION: Is q true in every ⊕-repair of db?

Definition

Let IC be a class of integrity constraints (for example, FDs, INDs. . . ).
Let C be a complexity class. The ⊕-consistent conjunctive query
answering problem for IC is said to be

Upper bound: in C if for every finite subset Σ of IC and Boolean
conjunctive query q, ⊕-CQA(Σ, q) is in C.

Upper+Lower bound: C-complete if it is in C and there exist a finite
subset Σ of IC and a Boolean conjunctive query q such that
⊕-CQA(Σ, q) is C-complete.
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answering problem for IC is said to be

Upper bound: in C if for every finite subset Σ of IC and Boolean
conjunctive query q, ⊕-CQA(Σ, q) is in C.

Upper+Lower bound: C-complete if it is in C and there exist a finite
subset Σ of IC and a Boolean conjunctive query q such that
⊕-CQA(Σ, q) is C-complete.
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Complexity of ⊕-Consistent Conj. Query Answering

in P coNP-c ΠP
2 -c undecidable
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Complexity Shift

⊕-repair checking ⊕-CCQA

† in L if weakly acyclic
‡ P-complete

in L in P coNP-c

FO

LAV tgd† w.a. tgds
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Discussion

Let Σ be a finite set of full tgds.

There is a polynomial time algorithm (“the chase”) that, given a
database db, computes the unique superset-repair of db with respect to Σ.

� ⊕-consistent conjunctive query answering for full tgds is intractable
because tuple deletions are on equal footing with tuple insertions.
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coNP-Hardness for Key

Proposition

⊕-CQA(Σ, q) is coNP-hard for Σ = {C : Vertex → Color} and
q = ∃x∃y∃z

(
C (x , z) ∧ C (y , z) ∧ E (x , y)

)
.

Proof sketch.

Graph is 3-colorable ⇐⇒ q is false in some repair

w
w

w
w

2

1

4

3

�
�
�

�

C Vertex Color
1 ‘red’
1 ‘blue’
1 ‘yellow’

...
4 ‘red’
4 ‘blue’
4 ‘yellow’

E From To
1 2
1 3
2 3
2 4
3 4
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Open Challenges

Combining Classes of Integrity Constraints

For example, primary keys and foreign keys (or, more generally, INDs).

Fine-Grained Complexity Classification

Assume that ⊕-consistent conj. query answering for a class IC is
coNP-complete. It is normal to ask whether the set

{ ⊕-CQA(Σ, q) | Σ is a finite subset of IC and
q is a Boolean conjunctive query }

exhibits an effective complexity dichotomy between P and coNP-complete.

Recall the point of dichotomy theorems:

If P ̸= NP,
then NPI is nonempty.
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Preliminaries

We will assume that every relation name R is associated with some arity n
and a (primary) key dependency {1, . . . , k} → {1, . . . , n} (k ≤ n). In this
case we say that R has signature [n, k]. We thus assume that all
primary-key positions precede all non-primary-key positions.

From here on, by key we mean the primary key {1, . . . , k}.
Let R be a relation name with signature [n, k]. An R-atom takes the form
R(s1, . . . , sk , sk+1, . . . , sn), where each si is a variable or a constant. An
R-fact is an R-atom without variables. Two facts are key-equal if they
agree on their relation names and on all key positions. For example,
S(a, b, d) and S(a, b, e) are key-equal.

A database (instance) db is a finite set of facts. A block in db is a
maximal set of key-equal facts. Blocks will be separated by dashed lines.
A relation in db is a maximal set of facts with the same relation name.
A database db is consistent if it contains no block with two or more facts.
A repair of db selects exactly one fact from each block.
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Example

For the relation name S of signature [3, 2],

the relation

S 1 2 3
a b d
a b e
b c d
b c e
b c f

contains two blocks, and has 6 repairs.

� For primary keys, ⊕-repairs and C-repairs coincide.
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Preliminaries (continued)

A Boolean conjunctive query q is a set of atoms. Satisfaction is defined as
usual. If some variable x in q is intended to be free, we write q(x).

Example

q = {R(x , y),S(y , d)}, where d is a constant, is satisfied by every
database that satisfies the first-order sentence

∃x∃y
(
R(x , y) ∧ S(y , d)

)
.

q(x) denotes ∃y
(
R(x , y) ∧ S(y , d)

)
.

A conjunctive query is self-join-free if no relation name occurs more than
once in it.
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CERTAINTY(q)

For every Boolean query q, CERTAINTY(q) is the following decision
problem:

Problem CERTAINTY(q)

Input: A database db.

Question: Is q true in every repair of db?

Note:

CERTAINTY(q) is a shorthand for ⊕-CQA(Σ, q) with Σ the set of
key dependencies associated with the relation names in q.

We study the data complexity, as q is not part of the input.

If the answer to the question is “yes”, then the input is called a
“yes”-instance of CERTAINTY(q); otherwise it is a “no”-instance.

In the remainder, we restrict q to be a self-join-free conjunctive query.
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Simple Example

Proposition

For q = {S(y , d)}, CERTAINTY(q) is in FO (with d a constant).

Proof.

The following are equivalent for every database db:

q is true in every repair of db; and

db satisfies φ = ∃y
(
∃u S(y , u) ∧ ∀u

(
S(y , u) → u = d

))
.

Example

The following database falsifies φ and
therefore is a “no”-instance of
CERTAINTY(q).
The repair indicated by ∗ falsifies q.

S 1 2
a d
a e ∗
b d
b f ∗
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More Involved Example

Proposition

For q = {P(x , z),N(y , z)}, CERTAINTY(q) is coNP-complete.

Proof sketch.

Reduction from MONOTONE SAT. Membership in coNP is easy.

Example

Let ϕ =

1︷ ︸︸ ︷
(p ∨ q)∧

2︷ ︸︸ ︷
(¬p ∨ ¬z)∧

3︷ ︸︸ ︷
(¬q ∨ ¬z)∧

4︷︸︸︷
(z) .

db =

P x z
1 p
1 q
4 z

N y z

2 p
2 z
3 q
3 z

ϕ is satisfiable~w�
db has a repair that falsifies
{P(x , z),N(y , z)}
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Complexity Classification Task

Complexity Classification Task

Input: A self-join-free Boolean conjunctive query q.

Task: Determine lower and upper complexity bounds on the
complexity of CERTAINTY(q), in terms of common
complexity classes like FO, L, NL, P, coNP.

Example

Input q
Complexity of

CERTAINTY(q)
{S(y , d)} FO
{P(x , z),N(y , z)} coNP-complete

...
...

Can we complete this table for every self-join-free Boolean conjunctive
query?
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Descriptive Complexity

Definition (Consistent rewriting)

Let L be some logic, and q(x1, . . . , xn︸ ︷︷ ︸
free variables

) a conjunctive query.

A consistent rewriting in L of q(x1, . . . , xn) w.r.t. primary keys is a formula
φ(x1, . . . , xn) in L such that for every database db, the following are
equivalent for all constants c1, . . . , cn:

1 q(c1, . . . , cn) is true in every repair of db; and

2 φ(c1, . . . , cn) is true in db.

Gray-colored text is often implicitly understood.

A rewriting in first-order logic, also called a first-order rewriting, can
be expressed in SQL.

For a Boolean query q,

q has a first-order rewriting
def.⇐⇒ CERTAINTY(q) is in FO.
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First-Order Rewriting for Variable-Free Keys

Let q be a self-join-free Boolean conjunctive query with an atom
R(c , d , y , y , z), where c and d are constants.

A database may contain

R 1/c 2/d 3/y 4/y 5/z

c d a1 a1 b1
c d a2 a2 b2

c a3 b3

.

Let q′ = q \ {R(c , d , y , y , z)}.
The following can be seen to be equivalent for every database db:

1 q is true in every repair of db; and

2 db satisfies ∃u2∃u3∃u4∃u5 R(c, u2, u3, u4, u5) as well as

∀u2∀y∀u4∀z
[
R(c , u2, y , u4, z) →

(
(u2 = d) ∧ (u4 = y)∧

φ(y , z)

)]
,

where φ(y , z) is a rewriting of q′(y , z).
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Reifiable Atoms

Definition (Reifiable variable)

Let q be a self-join-free Boolean conjunctive query. We say that a variable
x in q is reifiable if for every “yes”-instance db of CERTAINTY(q),

there is a constant c (which depends on db) such that qx→c is
true in every repair of db;

otherwise x is non-reifiable.

Definition (Reifiable atom)

An atom is reifiable if each variable in its primary key is reifiable.

Example

Let q = {R(x , y),S(y , d)}. It can be argued that x is reifiable, but y is
not.
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Example (continued)

y is not reifiable in {R(x , y),S(y , d)}, as shown by:

R x y
a c1
a c2

S y d

c1 d
c2 d

There are two repairs, both satisfying q. However, there is no constant c
such that qy→c is true in every repair.
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First-Order Rewriting for Reifiable Atoms

Let q be a self-join-free Boolean conjunctive query with an atom
R(c, y , y , z , . . .) such that y and z are reifiable.

Then, the following are equivalent for every database db:

1 q is true in every repair of db; and

2 db satisfies
∃y∃z︸ ︷︷ ︸
“reify”

ψ(y , z),

where ψ(y , z) is a rewriting of q(y , z).

Crux: In q(y , z), the key of R(c, y , y , z , . . .) contains only constants
and free variables, and we can apply the rewriting seen previously
for variable-free keys.

Claim: In a self-join-free conjunctive query, free variables can be
treated as constants.
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Example

A first-order rewriting of q = {R(x , y), S(y , d)} is constructed as follows:

1 since x is reifiable, a rewriting of q is ∃x ψ(x), where ψ(x) is a
rewriting of q(x);

2 by treating the free variable x in q(x) as a constant,

ψ(x) = ∃u R(x , u) ∧ ∀y (R(x , y) → φ(x , y)) ,

where φ(x , y) is a rewriting of q′(y) = S(y , d);

3 Finally, φ(x , y) = ∃u S(y , u) ∧ ∀u
(
S(y , u) → u = d

)
.

Putting everything together:

∃x

 ∃u R(x , u)∧
∀y

(
R(x , y) →

( ∃u S(y , u)∧
∀u

(
S(y , u) → u = d

) ))  .

Coming next: Can we determine whether a variable is reifiable?
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3 Finally, φ(x , y) = ∃u S(y , u) ∧ ∀u
(
S(y , u) → u = d

)
.

Putting everything together:

∃x

 ∃u R(x , u)∧
∀y

(
R(x , y) →

( ∃u S(y , u)∧
∀u

(
S(y , u) → u = d

) ))  .

Coming next: Can we determine whether a variable is reifiable?
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Attacks by Example

Let q = {R(u, x),S(x , y),T (y , z)}. The following database shows that x ,
y , and z are not reifiable.

R u x
a c1
a c2

S x y
c1 d1
c2 d2

T y z

d1 e1
d2 e2

Only the R-relation is inconsistent, yielding two repairs, both satisfying q
(i.e., it is a “yes”-instance). But

there is no c such that both repairs satisfy qx→c ;

there is no d such that both repairs satisfy qy→d ; and

there is no e such that both repairs satisfy qz→e .

We will write R
q
⇝ x , R

q
⇝ y , and R

q
⇝ z .

Also R
q
⇝ S , and R

q
⇝ T .

q
⇝ is read “attacks” and is used to show non-reifiability.
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Attacks by Example 2 (Continued)

Let q = {R(u, x),R(x , y),T (y , z)}. The following database shows that y
and z are not reifiable.

R u x
a c

S x y
c d1
c d2

T y z

d1 e1
d2 e2

Only the S-relation is inconsistent, yielding two repairs, both satisfying q.
But,

there is no d such that both repairs satisfy qy→d ; and

there is no e such that both repairs satisfy qz→e .

We have S
q
⇝ y and S

q
⇝ z .

Also S
q
⇝ T (because S attacks a key-variable of T ).
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Attacks by Example 2 (Continued)
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Attacks by Example 3 (Continued)

Let q = {P(u, y),R(u, x), S(x , y),T (y , z)}.

Claim: R
q

̸⇝ y and R
q

̸⇝ z .

Note that the following is a “no”-instance because the repair indicated
by ∗ falsifies q:

P u y
a d1 ∗
a d2

R u x
a c1
a c2 ∗

S x y
c1 d1
c2 d2

T y z

d1 e1
d2 e2

By definition, to show that variables are non-reifiable, we need
“yes”-instances!!!
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Attacks by Example 4 (Continued)

Let q = {P(u, y),R(u, x), S(x , y),T (y , z)}.

Claim: R
q
⇝ x .

The following database has two repairs, both satisfying q, for different
valuations of x :

P u y
a d

R u x
a c1
a c2

S x y
c1 d
c2 d

T y z

d e
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Syntactic Characterization of Attacks

Let q be a self-join-free Boolean conjunctive query containing an atom
with relation name R.
By an abuse of terminology, this atom is also referred to as the atom R
(of q). This is well-defined, as q is self-join-free.

We write vars(R) for the set of variables occurring in R, and key(R) for
the set of variables occurring in the key of R.

We define K(q) as the set of functional dependencies that contains
key(R) → vars(R) for every atom R of q.

We define R+,q = {x | K(q \ {R}) |= key(R) → x}, the set of variables
(in q) that are externally determined by (the key of) R.

Example

If q = {P(u, y),R(u, x), S(x , y),T (y , z)},
then K(q) = {u → y , u → x , x → y , y → z} and R+,q = {u, y , z}.
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Syntactic Characterization of Attacks (continued)

Definition (
q
⇝)

Let q be a self-join-free Boolean conjunctive query. We write R
q
⇝ z if

there exists a sequence of variables
x1, x2, . . . , xn

such that

1 x1 ∈ vars(R) and xn = z ;

2 no xi is externally determined by R; and

3 every two adjacent variables occur together in some atom of q.

Example

If q = {R(u, x),S(x , y),T (y , z)}, then the sequence x , y , z shows

that R
q
⇝ z (note here that R+,q = {u}).

When we add P(u, y), then y (as well as z) becomes externally
determined by R, making the attack disappear.
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Attack Graph

Definition (Attack graph)

Let q be a self-join-free Boolean conjunctive query.

We write R
q
⇝ S (R ̸= S) if R

q
⇝ z for some z in key(S).

The attack graph of q is a directed graph whose vertices are the atoms

of q; there is a directed edge from R to S if R
q
⇝ S .
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Examples of Attack Graph I

R(x, y)

G(y, z)B(z, x)

U(x, u)

V (x, u, v)

R+,q = {x , u, v}
B+,q = {z}
G+,q = {y}
U+,q = {x , y , z}
V+,q = {x , u, y , z}

R
q
⇝ B because of the sequence y , z .

G
q
⇝ V because of the sequence z , x .

U
q
⇝ V because of the sequence u.

Etc.
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Examples of Attack Graph II

R(x, y)

G(y, z)B(z, x)

U(x, u)

V (x, u, v)

W (a, x) Note that K(q) contains ∅ → x
because of W .

W+,q = {}
R+,q = {x , u, v}
B+,q = {z , x , y , u, v}
G+,q = {y , x , u, v}
U+,q = {x , y , z}
V+,q = {x , u, y , z}

R
q
⇝ B because of the sequence y , z .

G
q

̸⇝ V because {x , u} ⊆ G+,q.

Etc.
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Finale

Theorem

Let q be a self-join-free Boolean conjunctive query. If the attack graph of
q is acyclic, then q has a consistent first-order rewriting.

Proof sketch.

Assume that q’s attack graph is acyclic. Then q must contain an atom R
that is unattacked, and therefore reifiable. We can rewrite this atom by
the rewriting seen previously for reifiable atoms. It can be shown that the
attack graph of q \ {R} remains acyclic (where it is understood that the
variables of vars(R) are treated as constants in q \ {R}).

The converse is also true:

Theorem

If the attack graph of q is cyclic, then q has no consistent first-order
rewriting.
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Cyclic Attack Graphs

Recall (by our reduction from MONOTONE SAT):

Proposition

For q = {P(x , z),N(y , z)}, CERTAINTY(q) is coNP-complete.

One can prove:

Proposition

For q = {R(x , y),S(y , x)}, CERTAINTY(q) is in P (but not in FO,

because of the cycle R
q
⇝ S

q
⇝ R).

Definition (Weak attack)

Let q be a self-join-free Boolean conjunctive query. An attack R
q
⇝ S is

weak if K(q) |= key(R) → key(S); otherwise it is strong .
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Trichotomy Theorem

Theorem ([KW21])

Let q be a self-join-free Boolean conjunctive query.

If the attack graph of q is acyclic, then CERTAINTY(q) is in FO;

if the attack graph of q is cyclic but no cycle contains a strong
attack, then CERTAINTY(q) is L-complete;

otherwise CERTAINTY(q) is coNP-complete.
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Dichotomy

Corollary

For every self-join-free Boolean conjunctive query q, coCERTAINTY(q) is
either in P or NP-complete.

Recall from [GJ79]:
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Does it Extend to (Unions of) Conjunctive Queries???

Conjecture

For every Boolean conjunctive query q, CERTAINTY(q) is either in P or
coNP-complete.
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Adding Foreign Keys [HW22]

Proposition

Let q = {N(x , c , y),O(y)} and FK = {N[3] ⊆ O[1]}. Then,
⊕-CQA(q,PK ∪ FK) is not in FO (because it is not Hanf-local).

Proof idea.

db =

N x c y
b1 c 1

◦

b1 d 2
b2 c 2

◦

b2 d 3
b3 c 3

◦

b3 d 4
...

...
...

bn c n

◦

bn d n + 1

◦

bn+1 2 n + 1

O y

◦

1

Is db a “yes”- or a
“no”-instance?

Our goal: construct a
repair r s.t. r ̸|= q.
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Counting

For every Boolean query q, ♯CERTAINTY(q) is the following problem:

Problem ♯CERTAINTY(q)

Input: A database db.

Question: How many repairs of db satisfy q?

Complexity Classification Task

Input: A self-join-free Boolean conjunctive query q.

Task: Determine lower and upper complexity bounds on the
complexity of ♯CERTAINTY(q), in terms of common
complexity classes like FP and ♯P.

See [MW13] and its generalization [CLPS22] to functional
dependencies.

Same problem as query answering in block-independent disjoint (BID)
probabilistic databases under the restriction that in every block b,
every tuple has probability 1

|b| .
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BID Databases

Every input to CERTAINTY(q) is a block-independent disjoint database
without probabilities (or with uniform probabilities).

� Inconsistency is not only a burden, but also a chance. 3

3Inspired by [KL17]. The image is from [DRS09].
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Queries with Aggregation [ABC01]

WorksFor Emp Dept Sal

Ed Toys 1000
Ed Shoes 1500
An Toys 2000
Tim Shoes 4000

SELECT Dept, SUM(Sal)
FROM WorksFor
GROUP BY Dept

r1 Emp Dept Sal

Ed Toys 1000
An Toys 2000
Tim Shoes 4000

⇒
Dept SUM(Sal)
Toys 3000
Shoes 4000

r2 Emp Dept Sal

Ed Shoes 1500
An Toys 2000
Tim Shoes 4000

⇒
Dept SUM(Sal)
Toys 2000
Shoes 5500

Task: Return tight lower and upper bounds for SUM(Sal):

Dept SUM(Sal)

Toys [2000, 3000]
Shoes [4000, 5500]
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Denial Constraints

Definition Denial constraint

A denial constraint has the form:

¬∃x⃗1 . . . ∃x⃗k (R1(x⃗1) ∧ · · · ∧ Rk(x⃗k) ∧ β(x⃗1, . . . , x⃗k))

where β is a conjunction of atomic formulas using built-in predicates (=,
<).

Denial constraints

For the schema EMP[Name,Rank,Sal ]:

¬∃u, x , y , z (EMP(u, ‘boss’, y) ∧ EMP(x , ‘clerk’, z) ∧ y < z)
¬∃x , y1, z1, y2, z2 (EMP(x , y1, z1) ∧ EMP(x , y2, z2) ∧ y1 ̸= y2)
¬∃x , y1, z1, y2, z2 (EMP(x , y1, z1) ∧ EMP(x , y2, z2) ∧ z1 ̸= z2)

Claim: for denial constraints, ⊕-repairs are subset-repairs.
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Conflict Hypergraph

Relative to a database db and a set of denial constraints.

Definition Conflict hypergraph

A conflict hypergraph is a hypergraph whose hyperedges are subsets of db.
For every denial constraint

¬∃x⃗1 . . . ∃x⃗k (R1(x⃗1) ∧ · · · ∧ Rk(x⃗k) ∧ β(x⃗1, . . . , x⃗k)) ,

if θ is a valuation such that θ(x⃗i ) = a⃗i for 1 ≤ i ≤ k and

db |= R1(a⃗1) ∧ · · · ∧ Rk(a⃗k) ∧ β(a⃗1, . . . , a⃗k) ,

then {R1(a⃗1), . . . ,Rk(a⃗k)} is an hyperedge.
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Example Conflict Hypergraph [CM05]

Conflict hypergraph

EMP Name Rank Sal
t1 Ed clerk 28
t2 Tim clerk 30
t3 An boss 20
t4 An clerk 40

✓

✒

✏

✑

✎✍ ☞✌
t1

t2t3

t4

Properties

Every repair is a maximal (w.r.t. ⊆) subset of db that includes no
hyperedge of the conflict hypergraph.

The number of hyperedges is polynomial in the size of db.
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Quantifier-Free Boolean Queries

Definition Quantifier-free Boolean query

A quantifier-free Boolean query is a Boolean combination of ground
atoms. It can be assumed to be in CNF:

ϕ1 ∧ ϕ2 ∧ · · · ∧ ϕℓ ,

where each ϕi is of the form ¬A1 ∨ · · · ∨ ¬Am ∨ B1 ∨ · · · ∨ Bn, with
A1, . . . ,Am,B1, . . . ,Bn distinct ground atoms.

Quantifier-free Boolean query

¬EMP(‘An’, ‘clerk’, ‘40’) ∨ EMP(‘Ed’, ‘clerk’, ‘28’)
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Denial Constraints and Quantifier-Free Queries

Question

The problem is to verify for 1 ≤ i ≤ ℓ whether

ϕi = ¬A1 ∨ · · · ∨ ¬Am ∨ B1 ∨ · · · ∨ Bn

is true in every repair. We ask instead whether ϕi is false in some repair,
i.e., whether some repair r satisfies

¬ϕi = A1 ∧ · · · ∧ Am ∧ ¬B1 ∧ · · · ∧ ¬Bn .
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Denial Constraints and Quantifier-Free Queries

Crux HProver algorithm [CM05, CMS04]

Any repair r satisfying A1 ∧ · · · ∧ Am ∧ ¬B1 ∧ · · · ∧ ¬Bn must verify the
following conditions:

1 A1, . . . ,Am ∈ r;

2 for each edge E in the conflict hypergraph, E ⊈ r; and

3 Maximality: for 1 ≤ j ≤ n, if Bj ∈ db, then there is an edge Ej in the
conflict hypergraph such that Bj ∈ Ej and Ej \ {Bj} ⊆ r.

Why is HProver polynomial in the size of db?

The Maximality condition chooses n hyperedges among a polynomial
number of hyperedges.
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Other Topics

Database repairing and data exchange

Database repairing and approximations

Database repairing and preferences [SCM12, FKK15, KLP17, LK17]

Database repairing and implementations

Database repairing and database management systems

Consistent query answering for queries with negation

Consistent query answering in description logics

Consistent query answering over graph databases

. . .
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