Consistent Query Answering under Primary Key Constraints

Jef Wijsen

Université de Mons-Hainaut
soon: Université de Mons
Table of Contents

- Consistent First-order Rewriting
- The Class C_{rooted}
- Deciding C_{rooted}
Motivation

- How to deal with inconsistency in databases?
- Inconsistency entails incomplete database (i.e. set of possible databases, called repairs).

<table>
<thead>
<tr>
<th>EMP</th>
<th>Name</th>
<th>Status</th>
<th>Dept</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Ed</td>
<td>married</td>
<td>Toys</td>
</tr>
<tr>
<td></td>
<td>Ed</td>
<td>single</td>
<td>Toys</td>
</tr>
</tbody>
</table>

PRIMARY KEY(Name)

First repair:
- Ed married Toys

Second repair:
- Ed single Toys

We are interested in determining whether a Boolean query q is certain (i.e. whether q is true in every repair).

$\text{EMP}(\text{Ed}; y; \text{Toys})$ is certain.

$\text{EMP}(\text{Ed}; \text{married}; z; \text{Toys})$ is possible but not certain.
Motivation

- How to deal with inconsistency in databases?
- Inconsistency entails incomplete database (i.e. set of possible databases, called repairs).

<table>
<thead>
<tr>
<th>EMP</th>
<th>Name</th>
<th>Status</th>
<th>Dept</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ed</td>
<td>married</td>
<td>Toys</td>
<td></td>
</tr>
<tr>
<td>Ed</td>
<td>single</td>
<td>Toys</td>
<td></td>
</tr>
</tbody>
</table>

PRIMARY KEY(Name)

First repair:

Ed married Toys

Second repair:

Ed single Toys

We are interested in determining whether a Boolean query q is certain (i.e. whether q is true in every repair).

- $\exists y \text{EMP}(\underline{Ed}, y, \underline{Toys})$ is certain.
- $\exists z \text{EMP}(\underline{Ed}, \text{married}, z)$ is possible but not certain.
Problem Statement

- Assume a database schema where primary keys are the only constraints. Primary keys will be underlined.
- A repair of a not-necessarily-consistently-consistent database db is a maximal subset of db that contains no two atoms $R(\overline{a}, \overline{b}), R(\overline{a}, \overline{c})$ with $\overline{b} \neq \overline{c}$.
Problem Statement

- Assume a database schema where **primary keys** are the only constraints. Primary keys will be underlined.

- A **repair** of a not-necessarily-consistently database db is a maximal subset of db that contains no two atoms $R(\overline{a}, \overline{b}), R(\overline{a}, \overline{c})$ with $\overline{b} \neq \overline{c}$.

- Given a database schema S and a Boolean query q over S, let

$$CQA_S(q) := \{db \mid \text{every repair of } db \text{ satisfies } q\}$$
Problem Statement

- Assume a database schema where primary keys are the only constraints. Primary keys will be underlined.

- A repair of a not-necessarily-consistent database \mathbf{db} is a maximal subset of \mathbf{db} that contains no two atoms $R(\overline{a}, \overline{b}), R(\overline{a}, \overline{c})$ with $\overline{b} \neq \overline{c}$.

- Given a database schema \mathcal{S} and a Boolean query q over \mathcal{S}, let

 $$\text{CQA}_{\mathcal{S}}(q) := \{ \mathbf{db} \mid \text{every repair of } \mathbf{db} \text{ satisfies } q \}$$

- The schema \mathcal{S} will be clear from the query. E.g.,

 $$\exists x \exists y \exists z \exists w (R(x, y, z) \land S(z, w))$$
Complexity

- We limit attention to conjunctive queries.
- In coNP.

If $db \not\in \text{CQA}(q)$, then there exists a repair rep of db such that rep falsifies q.
Complexity

- We limit attention to conjunctive queries.
- In coNP.

 If $\text{db} \not\in \text{CQA}(q)$, then there exists a repair rep of db such that rep falsifies q.

- $\text{CQA}(q_1)$ is coNP-complete for [CM05]:

$$q_1 = \exists x \exists y \exists z (R(x, z) \land S(y, z)).$$
We limit attention to conjunctive queries.

In coNP. If $\text{db} \not\models \text{CQA}(q)$, then there exists a repair rep of db such that rep falsifies q.

$\text{CQA}(q_1)$ is coNP-complete for [CM05]:

$$q_1 = \exists x \exists y \exists z (R(x, z) \land S(y, z)).$$

$\text{CQA}(q_2)$ is coNP-complete for (see next slide):

$$q_2 = \exists x \exists y \exists z (C(x, z) \land C(y, z) \land E(x, y)).$$
Reduction From Graph 3-Colorability

\[q_2 = \exists x \exists y \exists z (\text{Color}(x, z) \land \text{Color}(y, z) \land \text{Edge}(x, y)) \]

graph is 3-colorable \iff some repair falsifies \(q_2 \)

<table>
<thead>
<tr>
<th>Edge</th>
<th>From</th>
<th>To</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Color</th>
<th>Vertex</th>
<th>Color</th>
</tr>
</thead>
<tbody>
<tr>
<td>red</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>blue</td>
<td>1</td>
<td>yellow</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>red</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>blue</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>yellow</td>
</tr>
</tbody>
</table>
Reduction From Graph 3-Colorability

\[q_2 = \exists x \exists y \exists z (\text{Color}(x, z) \land \text{Color}(y, z) \land \text{Edge}(x, y)) \]

graph is 3-colorable \iff some repair falsifies \(q_2 \)

<table>
<thead>
<tr>
<th>Edge</th>
<th>From</th>
<th>To</th>
<th>Color</th>
<th>Vertex</th>
<th>Color</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>2</td>
<td></td>
<td>1</td>
<td>blue</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>3</td>
<td></td>
<td>2</td>
<td>red</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>3</td>
<td></td>
<td>3</td>
<td>yellow</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>4</td>
<td></td>
<td>4</td>
<td>blue</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
First-order Definability

We say that $\text{CQA}(q)$ is first-order definable if there exists a first-order sentence ψ such that for every database db:

$$db \in \text{CQA}(q) \iff db \text{ satisfies } \psi$$
First-order Definability

- We say that $\text{CQA}(q)$ is first-order definable if there exists a first-order sentence ψ such that for every database db:

$$db \in \text{CQA}(q) \iff db \text{ satisfies } \psi$$

- ψ, if it exists, is called a consistent first-order rewriting for q.
We say that \(\text{CQA}(q) \) is first-order definable if there exists a first-order sentence \(\psi \) such that for every database \(\text{db} \):

\[
\text{db} \in \text{CQA}(q) \iff \text{db satisfies } \psi
\]

\(\psi \), if it exists, is called a consistent first-order rewriting for \(q \).

Why is this interesting?

- If \(\text{CQA}(q) \) is first-order definable, then \(\text{CQA}(q) \) is in \(\mathbf{P} \) (even in \(\mathbf{AC}^0 \)).
- \(\psi \) can be encoded in SQL...
Example

<table>
<thead>
<tr>
<th>EMP</th>
<th>Name</th>
<th>Status</th>
<th>Dept</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Ed</td>
<td>married</td>
<td>Toys</td>
</tr>
<tr>
<td></td>
<td>Ed</td>
<td>single</td>
<td>Toys</td>
</tr>
</tbody>
</table>

PRIMARY KEY(Name)

First repair:

- Ed married Toys

Second repair:

- Ed single Toys

\[q = \exists x \exists z \text{EMP}(x, \text{married}, z) \]

\[\psi = \exists x \exists z (\text{EMP}(x, \text{married}, z) \land \forall y \forall z' (\text{EMP}(x, y, z') \rightarrow y = \text{married})) \]
Example

<table>
<thead>
<tr>
<th>EMP</th>
<th>Name</th>
<th>Status</th>
<th>Dept</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Ed</td>
<td>married</td>
<td>Toys</td>
</tr>
<tr>
<td></td>
<td>Ed</td>
<td>single</td>
<td>Toys</td>
</tr>
</tbody>
</table>

PRIMARY KEY(Name)

First repair:

<table>
<thead>
<tr>
<th>EMP</th>
<th>Name</th>
<th>Status</th>
<th>Dept</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Ed</td>
<td>married</td>
<td>Toys</td>
</tr>
</tbody>
</table>

Second repair:

<table>
<thead>
<tr>
<th>EMP</th>
<th>Name</th>
<th>Status</th>
<th>Dept</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Ed</td>
<td>single</td>
<td>Toys</td>
</tr>
</tbody>
</table>

\[q = \exists x \exists z \text{EMP}(x, \text{married}, z) \]

\[\psi = \exists x \exists z (\text{EMP}(x, \text{married}, z) \land \forall y \forall z' (\text{EMP}(x, y, z') \rightarrow y = \text{married}) \]

No matter how EMP\((x, \cdot, \cdot)\) is repaired.
Facts and Conjectures

- If $P \neq NP$, then

$$\text{CQA}(q) \text{ coNP-complete} \implies q \text{ has no consistent first-order rewriting.}$$
Facts and Conjectures

- If $P \neq NP$, then

 $\text{CQA}(q)$ coNP-complete $\implies q$ has no consistent first-order rewriting.

- The implication \iff does not generally hold:

 Theorem 1. [Wij07] For $q = \exists x \exists y (R(x, y) \land R(y, c))$,

 - q has no consistent first-order rewriting, and
 - $\text{CQA}(q)$ is in P.

Facts and Conjectures

- If $P \neq NP$, then
 $$\text{CQA}(q) \text{ coNP-complete} \implies q \text{ has no consistent first-order rewriting.}$$

- The implication \iff does not generally hold:
 Theorem 1. [Wij07] For $q = \exists x \exists y (R(x, y) \land R(y, c))$,
 - q has no consistent first-order rewriting, and
 - CQA(q) is in P.

- **Conjecture 1.** For Boolean conjunctive queries q in which every relation name occurs at most once,
 $$q \text{ has no consistent first-order rewriting} \implies \text{CQA}(q) \text{ is coNP-complete.}$$
Table of Contents

- Consistent First-order Rewriting
- The Class C_{rooted}
- Deciding C_{rooted}
From now on, \(\exists \)-quantification is implicitly understood.

An atom \(R_i(x_i, y_i) \) is reifiable in

\[
q = R_1(x_1, y_1) \land \cdots \land R_m(x_m, y_m)
\]

if for every database \(db \),

if every repair of \(db \) satisfies \(q \), then every repair of \(db \) also satisfies \(\theta(q) \) for some valuation \(\theta \) over \(x_i \).
Reifiable Atom

- From now on, \exists-quantification is implicitly understood.
- An atom $R_i(\bar{x}_i, \bar{y}_i)$ is reifiable in
 \[q = R_1(\bar{x}_1, \bar{y}_1) \land \cdots \land R_m(\bar{x}_m, \bar{y}_m) \]
 if for every database db,
 if every repair of db satisfies q, then every repair of db also satisfies $\theta(q)$ for some valuation θ over \bar{x}_i.
- Notice that θ depends on db.
- (A valuation over \bar{x}_i is a mapping that maps every variable in \bar{x}_i to a constant, and that is the identity on variables not in \bar{x}_i and on constants.)
Reifiable Atom: Example

- $R(y)$ is not reifiable in $q = R(y) \land S(x, y)$.

Let $db = \{ R(a), R(b), S(c, a), S(c, b) \}$ with two repairs:

$$\text{rep}_1 = \{ R(a), R(b), S(c, a) \}$$
$$\text{rep}_2 = \{ R(a), R(b), S(c, b) \}$$

- Both repairs satisfy q.

- There is no valuation θ over y such that both repairs satisfy $\theta(q)$. In particular,
 - rep_2 falsifies $\theta_a(q)$ with $\theta_a = \{ y \mapsto a \}$
 - rep_1 falsifies $\theta_b(q)$ with $\theta_b = \{ y \mapsto b \}$

- On the other hand, it is not hard to see that $S(x, y)$ is reifiable in $q = R(y) \land S(x, y)$.
Ordered Boolean Conjunctive Queries

- A Boolean conjunctive query is just a finite set of atoms (the \exists-quantification is understood).

- An ordered Boolean conjunctive query is a finite sequence of atoms: $\langle R_1(x_1, y_1), \ldots, R_m(x_m, y_m) \rangle$.

- All definitions given for (non-ordered) queries apply to ordered queries (simply omit the order).

- The term rule is a shorthand for Boolean conjunctive query.
Rooted ordered rules are recursively defined as follows:

1. The empty rule is rooted.
2. A nonempty ordered rule

\[q = \langle R_1(x_1, y_1), R_2(x_2, y_2), \ldots, R_n(x_n, y_n) \rangle \]

\((n \geq 1)\) is rooted if \(R_1(x_1, y_1)\) is reifiable in \(q\) and for every valuation \(\theta\) over \(x_1 y_1\), the shorter rule

\[\langle \theta(R_2(x_2, y_2)), \ldots, \theta(R_n(x_n, y_n)) \rangle \]

is rooted.
Significant Result

- We say that a (non-ordered) rule is rooted if it is rooted for some linear ordering of its atoms.
- The class of rooted rules is denoted by C_{rooted}.
We say that a (non-ordered) rule is rooted if it is rooted for some linear ordering of its atoms.

The class of rooted rules is denoted by C_{rooted}.

Theorem 2. [Wij07] If $q \in C_{\text{rooted}}$, then $\text{CQA}(q)$ is first-order definable.

In other words, every rooted rule has a consistent first-order rewriting.
We say that a (non-ordered) rule is rooted if it is rooted for some linear ordering of its atoms.

The class of rooted rules is denoted by C_{rooted}.

Theorem 2. [Wij07] If $q \in C_{\text{rooted}}$, then $\text{CQA}(q)$ is first-order definable. In other words, every rooted rule has a consistent first-order rewriting.

$C_{\text{forest}} \subsetneq C_{\text{rooted}}$ (see [FM07] for C_{forest}).
We say that a (non-ordered) rule is rooted if it is rooted for some linear ordering of its atoms.

The class of rooted rules is denoted by C_{rooted}.

Theorem 2. [Wij07] If $q \in C_{\text{rooted}}$, then $\text{CQA}(q)$ is first-order definable.

In other words, every rooted rule has a consistent first-order rewriting.

$C_{\text{forest}} \subsetneq C_{\text{rooted}}$ (see [FM07] for C_{forest}).

Conjecture 2. If a rule is not rooted, then it has no consistent first-order rewriting.

Theorem 3. [Wij09] If a rule $R(\vec{x}, \vec{y}), S(\vec{u}, \vec{w})$ with $R \neq S$ is not rooted, then it has no consistent first-order rewriting.
For example,

\[q = \langle R(x, y), S(y, a) \rangle \] is rooted (to be shown).

\[R(x, y_1), S(y_2, z), y_1 = y_2, z = a \]

Consistent first-order rewriting:

\[
\psi = \exists x \exists y'_1 (R(x, y'_1) \land \forall y_1 (R(x, y_1) \rightarrow \\
\exists y_2 \exists z' (S(y_2, z') \land \forall z (S(y_2, z) \rightarrow y_1 = y_2 \land z = a)))
\]

Special care if the same relation name occurs more than once.
Rewrite Function: Example

- For example,
 - $q = \langle R(x, y), S(y, a) \rangle$ is rooted (to be shown).
 - $R(x, y_1), S(y_2, z), y_1 = y_2, z = a$

- Consistent first-order rewriting:

 Reifiability

 $$
 \psi = \exists x \exists y'_1 (R(x, y'_1)) \land \forall y_1 (R(x, y_1) \rightarrow \\
 \exists y_2 \exists z' (S(y_2, z')) \land \forall z (S(y_2, z) \rightarrow y_1 = y_2 \land z = a))
 $$

- Special care if the same relation name occurs more than once.
For example,

\[q = \langle R(x, y), S(y, a) \rangle \] is rooted (to be shown).

\[R(x, y_1), S(y_2, z), y_1 = y_2, z = a \]

Consistent first-order rewriting:

All ways of repairing

\[\psi = \exists x \exists y_1' (R(x, y_1') \land \forall y_1 (R(x, y_1) \rightarrow \exists y_2 \exists z' (S(y_2, z') \land \forall z (S(y_2, z) \rightarrow y_1 = y_2 \land z = a))) \]

Special care if the same relation name occurs more than once.

Symposium on Consistency Handling in Relational Databases, Leuven, 19 December 2008 – p.16/32
Table of Contents

- Consistent First-order Rewriting
- The Class C_{rooted}
- Deciding C_{rooted}
Is C_{rooted} Decidable?

Notice that C_{rooted} is a semantic class.
Is C_{rooted} Decidable?

- Notice that C_{rooted} is a **semantic** class.
- The crux [to decidability of C_{rooted}] is the **Reifiability Problem**:

 Given a rule q and an atom $R(\overline{x}, \overline{y}) \in q$, is $R(\overline{x}, \overline{y})$ reifiable in q?
Is C_{rooted} Decidable?

- Notice that C_{rooted} is a semantic class.
- The crux [to decidability of C_{rooted}] is the Reifiability Problem:

 Given a rule q and an atom $R(\overline{x}, \overline{y}) \in q$, is $R(\overline{x}, \overline{y})$ reifiable in q?

- Moreover, Theorem 4.[Wij09] Let q be an ordered rule in which no relation name occurs more than once. Let X be a set of variables.
 If $\theta(q)$ is rooted for some valuation θ over X, then $\mu(q)$ is rooted for every valuation μ over X.

Outline

- We will define the syntactic construct of reifiability-attack, which relies on
 - Key-closure
 - Join tree [BFMY83]
We will define the syntactic construct of reifiability-attack, which relies on

 Key-closure

 Join tree [BFMY83]

What’s in a name?

 A reifiability-attack against an atom A implies that A is not reifiable (under some mild additional condition).

 An atom without reifiability-attack against it, is reifiable (always).
Key-closure: Motivating Example

- Let $q = R(x, y) \land S(x, y)$.
- Let db be a database such that every repair of db satisfies q.
Let $q = R(x, y) \land S(x, y)$.

Let db be a database such that every repair of db satisfies q.

Then, we can assume constants a, b such that:
- $R(a, b), S(a, b) \in db$; and
- whenever $c \neq b$, then $R(a, c) \not\in db$ and $S(a, c) \not\in db$.
Let $q = R(x, y) \land S(x, y)$.

Let db be a database such that every repair of db satisfies q.

Then, we can assume constants a, b such that:
- $R(a, b), S(a, b) \in db$; and
- whenever $c \neq b$, then $R(a, c) \notin db$ and $S(a, c) \notin db$.

Then, there is a constant a such that every repair of db satisfies $\theta_a(q)$, where $\theta_a = \{x \mapsto a\}$.
Key-closure: Motivating Example

Let \(q = R(x, y) \land S(x, y) \).

Let \(db \) be a database such that every repair of \(db \) satisfies \(q \).

Then, we can assume constants \(a, b \) such that:
- \(R(a, b), S(a, b) \in db \); and
- whenever \(c \neq b \), then \(R(a, c) \notin db \) and \(S(a, c) \notin db \).

Then, there is a constant \(a \) such that every repair of \(db \) satisfies \(\theta_a(q) \), where \(\theta_a = \{x \mapsto a\} \).

Moreover, for all valuations \(\theta_1, \theta_2 \) over \(\{x, y\} \),
- if \(\theta_1(q), \theta_2(q) \subseteq db \) and \(\theta_1(x) = \theta_2(x) = a \),
- then \(\theta_1(y) = \theta_2(y) \).

We will write \(y \in [{\{x\}}]^+ \).
Key-closure: Definition

- Relative to a rule \(q \) without self join (i.e. without repeated relation names).
- \(\text{vars}(\vec{x}) \) is the set of variables that occur in \(\vec{x} \).
Key-closure: Definition

Relative to a rule \(q \) without self join (i.e. without repeated relation names).

\(\text{vars}(\vec{x}) \) is the set of variables that occur in \(\vec{x} \).

Let \(X \) be a set of variables. The key-closure of \(X \), denoted \([X]^+ \), is the smallest set satisfying:

\(X \subseteq [X]^+ \); and

for every \(R(\vec{x}, \vec{y}), S(\vec{u}, \vec{w}) \in q \) such that \(R \neq S \),

if \(\text{vars}(\vec{x}) = \text{vars}(\vec{u}) \subseteq [X]^+ \),

then \(\text{vars}(\vec{y}) \cap \text{vars}(\vec{w}) \subseteq [X]^+ \).
Key-closure: Definition

Relative to a rule q without self join (i.e. without repeated relation names).

vars(\bar{x}) is the set of variables that occur in \bar{x}.

Let X be a set of variables. The key-closure of X, denoted $[X]^+$, is the smallest set satisfying:

$X \subseteq [X]^+$; and

for every $R(\bar{x}, \bar{y}), S(\bar{u}, \bar{w}) \in q$ such that $R \neq S$,

- if $\text{vars}(\bar{x}) = \text{vars}(\bar{u}) \subseteq [X]^+$,
- then $\text{vars}(\bar{y}) \cap \text{vars}(\bar{w}) \subseteq [X]^+$.

For example, for

$R_0(z), R_1(x, y, z), R_2(x, y, u), R_3(x, y), R_4(x, y, u)$

we have $\{x\}^+ = \{x, y\}^+ = \{x, y, u\}$.
A rule q is \textit{acyclic} if it has a join tree [BFMY83].

A \textit{join tree} for a rule q is an undirected tree whose vertices are the atoms of q such that:

\textbf{Connectedness Condition:} whenever the same variable z occurs in two atoms $R_i(\overline{x}_i, \overline{y}_i)$ and $R_j(\overline{x}_j, \overline{y}_j)$, then z occurs in each atom on the unique path linking $R_i(\overline{x}_i, \overline{y}_i)$ and $R_j(\overline{x}_j, \overline{y}_j)$.

It is common to label each edge with the set of variables that occur in both end points.
Join Tree: Example

\begin{center}
\begin{tikzpicture}
 \node (r0) at (0,0) {$R_0(x, y)$};
 \node (r1) at (0,-2) {$R_1(x, y)$};
 \node (r2) at (-1,-4) {$R_2(y, z)$};
 \node (r3) at (1,-4) {$R_3(y, a)$};
 \node (r4) at (0,-6) {$R_4(z, w)$};
 \node (x) at (0,-3) {$\{x, y\}$};
 \node (y1) at (0,-5) {$\{y\}$};
 \node (y2) at (1,-5) {$\{y\}$};
 \node (z) at (0,-7) {$\{z\}$};

 \draw (r0) -- (x);
 \draw (r1) -- (y1);
 \draw (r1) -- (y2);
 \draw (r2) -- (z);
 \draw (r3) -- (z);
 \draw (r4) -- (z);
\end{tikzpicture}
\end{center}
Let q be an acyclic query. Let τ be a join tree for q.

A reifiability-attack against an atom $R(\vec{x}, \vec{y}) \in q$ is a path π in τ from $R(\vec{x}, \vec{y})$ to some atom $S(\vec{u}, \vec{w})$ such that:

- $\text{vars}(\vec{x}) \notin \text{vars}^+(\vec{u})$; and
- for each label L on π, we have $L \notin \text{vars}^+(\vec{u})$.

Reifiability-attack
Let q be an acyclic query. Let τ be a join tree for q.

A reifiability-attack against an atom $R(\vec{x}, \vec{y}) \in q$ is a path π in τ from $R(\vec{x}, \vec{y})$ to some atom $S(\vec{u}, \vec{w})$ such that:

- $\text{vars}(\vec{x}) \not\subseteq \text{vars}^{+}(\vec{u})$; and
- for each label L on π, we have $L \not\subseteq \text{vars}^{+}(\vec{u})$.

Thus, a reifiability-attack against $R(\vec{x}, \vec{y})$ is a path that starts from $R(\vec{x}, \vec{y})$ such that:

$\text{vars}(\vec{x})$ and each label on the path are not contained in the key-closure of the primary key of the last atom on the path.
Reifiability-attack: Example

The red path is a reifiability-attack against $R_4(z, w)$, because:

- $\text{vars}(z) \nsubseteq \text{vars}^+(x) = \{x\}$, and
- $\{z\}, \{y\} \nsubseteq \text{vars}^+(x)$.

Symposium on Consistency Handling in Relational Databases, Leuven, 19 December 2008 – p.25/32
The blue path is not a reifiability-attack against $R_4(z, w)$, because $\{y\} \subseteq \text{vars}^+(\underline{x}) = \{x, y\}$.
Absence of Reifiability-attack

Theorem 5. [Wij09] Let q be an acyclic rule without self join. Let τ be a join tree for q. Let $A \in q$. If τ contains no reifiability-attack against A, then A is reifiable in q.

We also showed that, under some (mild) additional condition, a reifiability-attack against A implies that A is not reifiable.
Corollary 1. A rule \(q \) without self join is rooted if it has a directed rooted join tree \(\tau \) such that whenever the atom \(R_i(\overline{x}_i, \overline{y}_i) \) is the parent of \(R_j(\overline{x}_j, \overline{y}_j) \), then either

- \(\text{vars}(\overline{x}_i) \subseteq \text{vars}(\overline{x}_j) \), or
- \(L \subseteq \text{vars}(\overline{x}_j) \),

where \(L \) is the label on the edge between \(R_i(\overline{x}_i, \overline{y}_i) \) and \(R_j(\overline{x}_j, \overline{y}_j) \).
Corollary 1. A rule q without self join is rooted if it has a directed rooted join tree τ such that whenever the atom $R_i(\overline{x}_i, \overline{y}_i)$ is the parent of $R_j(\overline{x}_j, \overline{y}_j)$, then either

- $\text{vars}(\overline{x}_i) \subseteq \text{vars}(\overline{x}_j)$, or
- $L \subseteq \text{vars}(\overline{x}_j)$,

where L is the label on the edge between $R_i(\overline{x}_i, \overline{y}_i)$ and $R_j(\overline{x}_j, \overline{y}_j)$.

This works essentially because no “downward” path can be a reifiability-attack against the first atom on the path.
Corollary 1. A rule \(q \) without self join is rooted if it has a directed rooted join tree \(\tau \) such that whenever the atom \(R_i(x_i, y_i) \) is the parent of \(R_j(x_j, y_j) \), then either

- \(\text{vars}(x_i) \subseteq \text{vars}(x_j) \), or
- \(L \subseteq \text{vars}(x_j) \),

where \(L \) is the label on the edge between \(R_i(x_i, y_i) \) and \(R_j(x_j, y_j) \).

This works essentially because no “downward” path can be a reifiability-attack against the first atom on the path.

The tree components of a Boolean \(C_{forest} \) query [FM07] are special cases of this. Covers many natural queries.
Application: Example

The blue path is not a reifiability-attack against $R(x, y)$, because $\text{vars}(x) \subseteq \text{vars}^+(x, u) = \{x, u\}$.

The green path is not a reifiability-attack against $R(x, y)$, because $\{y\} \subseteq \text{vars}^+(y, z) = \{y, z\}$.
The idea of certain (or consistent) query answers on inconsistent databases was proposed in [ABC99]. That paper also brought up the idea of consistent query rewriting.

Consistent first-order query rewriting of conjunctive queries under primary keys was studied by Fuxman and Miller [FM05, FM07]. Extensions can be found in [GLRR05, LRR06].
References

