
Adding Recursion to SPJRUD

Jef Wijsen

February 1, 2021

1 Introduction

In Bases de Données I, it was mentioned that the relational calculus cannot express transitive closure.
Informally, this is because the relational calculus contains no recursion or looping constructs. We will
now study the question of how to add some form of recursion to the relational calculus. An important
concern is that the resulting language should still have a low complexity. We will express our findings
in the SPJRUD algebra, which is equivalent to the relational calculus.

2 Time and Space Complexity

When we use the term algorithm, we mean an algorithm that terminates on every input. That is, a
procedure that loops forever on some input is not an algorithm.

Let f be a function. We say that an algorithm runs in O(f(n)) time if there exists a constant k
such that on inputs of sufficiently large size n, the algorithm terminates after at most k · f(n) steps.
We say that an algorithm runs in O(f(n)) space if there exists a constant k such that on inputs of
sufficiently large size n, the algorithm uses at most k · f(n) bits of auxiliary memory. Importantly,
the space used to store the input or the output is not counted as auxiliary memory. For example, the
only auxiliary memory used by the program

input i;
for j = 1 to i do

print i;

is the memory needed for the counter j.
If f is a polynomial function, then an algorithm that runs in O(f(n)) time is said to run in

polynomial time. If f is a logarithmic function, then an algorithm that runs in O(f(n)) space is
said to run in logarithmic space. An algorithm that runs in polynomial time is also called a polytime
algorithm. An algorithm that runs in logarithmic space is also called a logspace algorithm.

Every logspace algorithm can be made to run in polynomial time. Informally, this is because an
algorithm that uses only k · log n bits of auxiliary memory (for some input size n and constant k)
cannot use more than 2k·logn = nk (a polynomial number) distinct auxiliary states. If ` is the number
of lines of code of such an algorithm, then an execution with more than ` · nk steps must execute
the same line of code twice with the same auxiliary state. Such an execution is in an infinite loop.
But this would mean that we do not have an algorithm, because algorithms must terminate on every
input.

A decision problem is a problem with possible outcomes “yes” and “no.” The class P (also called
PTIME) contains all decision problems that can be solved by a polytime algorithm. The class L
(also called LOGSPACE) contains all decision problems that can be solved by a logspace algorithm.
We thus have L ⊆ P; it remains an open problem whether the inclusion is strict.

1

3 Query Evaluation in SPJRUD

For every fixed SPJRUD expression E, we define EVAL(E) as the following problem:

INPUT: A database I and a tuple t.

QUESTION: Does t belong to JEKI?

Recall from Bases de Données I that JEKI is the relation obtained by evaluating E on I. Of
course, in practice we will mostly be interested in computing JEKI rather than asking whether JEKI

contains a particular tuple t. The reason for asking “t ∈ JEKI?” is that we wanted to state our problem
as a decision problem, to be able to refer to complexity classes for decision problems, like L and P.
It can also be easily seen that if there exists a polytime algorithm for computing the complete answer
to E, then EVAL(E) is in P; and if there exists a logspace algorithm for computing the complete
answer to E, then EVAL(E) is in L.

In the database literature, the term data complexity is used when the complexity is measured in
the size of the input database, for a fixed query, as in the above problem. This is different from
query complexity, where the complexity is measured in the size of the query, for a fixed database. The
following proposition considers the data complexity of evaluating SPJRUD expressions.

Proposition 1. For every expression E in SPJRUD, there exists a logspace algorithm for the following
problem: Given a database I, return JEKI . Therefore, EVAL(E) is in L for every expression E in
SPJRUD.

Proof sketch. Let E be an expression in SPJRUD. One first idea is to compute and store the results
of subpexpressions in auxiliary relations. For example, (R1 on S1)− (R2 on S2) could be computed as
follows:

1. compute and store R1 on S1 in an auxiliary relation X1;

2. compute and store R2 on S2 in an auxiliary relation X2;

3. finally, compute and return each tuple in X1 −X2.

Alas, the auxiliary relations X1 and X2 may use more than logarithmic space.
The solution to this problem is simple: We do not explicitly store the intermediate results in

auxiliary relations X1 and X2. Instead, we simulate X1 and X2 by remembering at all times two
indexes i1 and i2 in X1 and X2, respectively. The indexes are stored in binary. Whenever the
computation of the difference (−) needs some tuple at position ij in Xj (j = 1, 2), that tuple is
computed “on the flight.”

How many bits are needed for each index? We can compute a constant k (which depends on E)
such that for every database I, no intermediate result in the computation of JEKI can contain more
than |I|k tuples. For example, for i = 1, 2, we have that |Ri on Si| ≤ |Ri| · |Si| ≤ |I|2. Therefore,
since an index of n bits can take 2n distinct values, every index needs only O(log |I|) bits. How many
indexes are needed? It suffices to have one index for every subexpression of E. Importantly, the
number of indexes does not depend on I, that is, the number of indexes is O(1).

In conclusion, the auxiliary memory needed to solve EVAL(E) is a constant number of indexes,
each of logarithmic size, thus logarithmic space in total.

The proof of Proposition 1 shows an important idea: logarithmic space is sufficient to store a
constant number of indexes in the input.

2

4 Fixed Points

Let U be a finite set. A mapping f : P(U) → P(U) is said to be inflationary if for all X ⊆ U ,
X ⊆ f(X). We say that f is monotone if for all X,Y ⊆ U , X ⊆ Y implies f(X) ⊆ f(Y). A set
X ⊆ U is a fixed point of f if f(X) = X.

Example 1. Let U = {a, b} and f1, f2, f3 as follows.

X f1(X) f2(X) f3(X)

∅ {a, b} ∅ {a, b}
{a} {a} {b} {b}
{b} {b} {a} {a}
{a, b} {a, b} {a, b} ∅

� f1 is inflationary but not monotone, because ∅ ⊆ {a}, but f1(∅) 6⊆ f1({a});

� f2 is monotone but not inflationary, because {a} 6⊆ f2({a}); and

� f3 is neither inflationary nor monotone.

Property 1. Define X0 := ∅, and for i = 0, 1, 2, . . ., Xi+1 := f(Xi).

� If f is inflationary or f is monotone, then for some n ≤ |U |, Xn is a fixed point.

� Moreover, if f is monotone, then this fixed point Xn is included in every other fixed point of f .
That is, Xn is the unique least fixed point of f .

Proof. If Xn is a fixed point, then Xn+1 = f(Xn) = Xn, and thus for all j ≥ n, Xj = Xn.
Consider first the case that f is inflationary. Since X0 ⊆ X1 ⊆ X2 ⊆ · · · and since U is finite, at

least one inclusion must be an equality, at which point the sequence reaches a fixed point. Obviously,
this fixed point is reached after at most |U | steps.

Consider next the case that f is monotone. We show by induction on increasing i that for every
i = 0, 1, 2, . . . , we have Xi ⊆ Xi+1. This is obvious for i = 0, because X0 is the empty set. For the
induction step, i → i + 1, the induction hypothesis is Xi ⊆ Xi+1. Since f is monotone, f(Xi) ⊆
f(Xi+1), thus Xi+1 ⊆ Xi+2. So also in this case, X0 ⊆ X1 ⊆ X2 ⊆ · · · , which implies that the
sequence must reach a fixed point. To show the second item, consider another fixed point Y , i.e.,
f(Y) = Y . If Xi ⊆ Y for some i, then, since f is monotone, f(Xi) ⊆ f(Y), thus Xi+1 ⊆ Y . Since
X0 ⊆ Y is obvious, it follows that every Xi is included in Y . Therefore, the fixed point reached by
the sequence X0, X1, X2, . . . is included in Y .

Example 2. For f1, f2, f3 as in Example 1, we obtain the following sequences:

� for f1: ∅, {a, b}, {a, b}, {a, b}, . . .

� for f2: ∅, ∅, ∅, . . .

� for f3: ∅, {a, b}, ∅, {a, b}, ∅, {a, b},. . .

Note that the sequence for f1 reaches the fixed point {a, b}, but {a} and {b} are smaller fixed points
of f1. The sequence for f3 does not converge.

3

5 A Fixed Point Operator for SPJRUD

We now introduce the notion of fixed point into the SPJRUD algebra. We therefore need functions f
mapping relations to relations, all with the same set of attributes. It is important that outputs and
inputs of f have the same set of attributes, so that any output relation can be used again as an input
relation. We start with an example.

Example 3. Let R and ∆ be relation names such that sort(R) = sort(∆) = {A,B}. It is helpful to
think of R as a database relation, and of ∆ as some auxiliary relation. Consider

E := R ∪ πAB (ρB 7→C (R) on ρA 7→C (∆)) .

It can be verified that sort(E) = {A,B}. Take the following relation for R:

R A B
1 2
2 3
3 4

We define f as the mapping that takes, as input, a relation for ∆, and returns, as output, the relation
computed by E. As before, we define ∆0 = ∅, and for i = 0, 1, 2, . . . , we define ∆i+1 = f(∆i).

∆0 A B ∆1 A B
1 2
2 3
3 4

∆2 A B
1 2
2 3
3 4
1 3
2 4

∆3 A B
1 2
2 3
3 4
1 3
2 4
1 4

∆4 = ∆3

The relation ∆3 is a fixed point, and will be taken as the answer to E. Note that ∆3 is the transitive
closure of the input relation for R.

Let S be a set of attributes. Let ∆ be a fresh relation name. Let E be an algebra expression
using ∆ and relation names in the database schema such that sort(E) = sort(∆) = S. Although ∆ is
used in E, ∆ is not a database relation but rather an auxiliary relation. The relation name ∆ and
the expression E must be of the same sort to allow for recursion: every relation returned by E will
be a legal instance of ∆. We now extend the SPJRUD algebra with a new operator fp∆:S (E) such
that sort(fp∆:S (E)) = S. Intuitively, the subscript ∆ : S declares that ∆ is a fresh relation name
with sort(∆) = S. It is understood that fp-operators can be nested: E can have a subexpression
fp∆′:S′ (E′).

Example 4. Let R be a relation name with sort(R) = {A,B,C}. Then

E1 := fp∆:ABC (R ∪ πABC (ρB 7→D (R) on ρA 7→D (∆)))

is syntactically well-defined, with sort(∆) = {A,B,C}. The new operator can be nested, as illustrated
next.

E2 := πAB (E1)

E3 := fp∆′:AB

(
E2 ∪ πAB

(
ρB 7→C (E2) on ρA 7→C

(
∆′

)))
Can you explain what E3 computes?

An example of a more intricate nesting is fp∆:A (∆ ∪ (R− fp∆′:A (∆′ ∪ (R−∆)))), where ∆ occurs
in the fp-subexpression fp∆′:A (∆′ ∪ (R−∆)) and sort(R) = {A}.

4

We are now ready to define the formal semantics of fp∆:S (E), i.e., we define what is Jfp∆:S (E)KI

for a database I. So let I be a database. Let f be the following function whose argument is any
relation X over S:

f(X) := JEKI∆→X . (1)

Here, I∆→X denotes the database that maps ∆ to X, and maps every other relation name R to RI .
Note that f depends on I. Now we define ∆0 := ∅, and for i = 0, 1, 2, . . . , define ∆i+1 := f(∆i). If the
sequence (∆i)∞i=0 reaches a fixed point ∆n, then Jfp∆:S (E)KI := ∆n; otherwise Jfp∆:S (E)KI remains
undefined. In general, given a database I, the answer to JEKI is undefined if some (not necessarily
proper) fp-subexpression of E is undefined on I.

Example 5. Let sort(R) = sort(∆). Let E := R − ∆. Let I be a database. Let f be the function
defined by (1). We have f(∅) = RI and f(RI) = ∅. Consequently, if RI 6= ∅, then Jfp∆:A (E)KI is
undefined; otherwise, if RI = ∅, then Jfp∆:A (E)KI = ∅.

Alas, there is something unsatisfactory about the preceding semantics: we want to avoid situations
where Jfp∆:S (E)KI is undefined, but we cannot tell a priori whether such a situation can occur.

Proposition 2. The following problem is undecidable: Given an expression fp∆:S (E), decide whether
Jfp∆:S (E)KI is defined for every database I.

Proof. Let sort(∆) = ∅. Let F be an arbitrary SPJRUD expression with sort(F) = ∅. Let E := F −∆.
For every database I and X ∈ {{}, {{}}}, either JEKI∆→X = {} (the empty relation) or JEKI∆→X =
{{}} (the singleton relation containing the empty tuple). If JF KI = {} for every database I, then
JEKI∆→{} = {} for every database I, and thus Jfp∆:S (E)KI is equal to {} (and thus defined) for every
database I.

Now assume that JF KJ = {{}} for some database J . Then, for the the function f defined by
f(X) := JEKJ∆→X , we obtain f({}) = {{}} and f({{}}) = {}, which implies that Jfp∆:S (E)KJ is
undefined.

Consequently, Jfp∆:S (E)KI is defined for every database I if and only if JF KI = {} for every
database I. The latter condition is undecidable by Trakhtenbrot’s theorem, which states (paraphras-
ing somewhat) that there exists no algorithm for the following problem: Given an expression E in
SPJRUD, is there a database I such that JEKI 6= {}? This concludes the proof.

That is, there exists no algorithm that, on input fp∆:S (E), can tell us whether Jfp∆:S (E)KI will
be defined for all databases I. This is unsatisfactory, because whenever we write a query in some
database application, we want to be sure that the query will succeed on every input database. We
cannot accept a situation where a query succeeds on some databases, but fails on others.

To solve this problem, we have to restrict the syntax of E. To understand the following definition,
note that in R− (S − T), the relation name R is in the scope of zero −-signs, S is in the scope of one
−-sign, and T is in the scope of two −-signs.

Definition 1. Let E be an expression using fp-operators and operators in SPJRUD. We say that E
is positive in ∆ if all occurrences of ∆ in E occur within the scope of an even number of −-signs;
symmetrically, E is negative in ∆ if all occurrences of ∆ in E occur within the scope of an odd number
of −-signs.

Note that ∆−∆ is neither positive nor negative in ∆, because the first occurrence of ∆ in ∆−∆
occurs within the scope of 0 (an even number) −-signs, and the second occurrence within the scope
of 1 (an odd number) −-sign. On the other hand, a subexpression in which ∆ does not occur, is both
positive and negative in ∆.

Proposition 3. Let F = fp∆:S (E) be an expression using fp-operators and operators in SPJRUD.
Let I be an arbitrary database, and let f be the mapping defined by f(X) = JEKI∆→X . Then,

5

1. f is inflationary if for every (not necessarily proper) fp-subexpression fp∆′:S′ (E′) of F , we have
that E′ is a union of the form ∆′ ∪ E′′; and

2. f is monotone if for every (not necessarily proper) fp-subexpression fp∆′:S′ (E′) of F , we have
that E′ is positive in ∆′.

Proof. To prove the first item, assume that for every (not necessarily proper) fp-subexpression fp∆′:S′ (E′)
of F , we have that E′ is a union of the form ∆′ ∪ E′′. In particular, we can assume E = ∆ ∪ E′ for
some E′. Since ∆i+1 := f(∆i) = J∆ ∪ E′KI∆→∆i = ∆i ∪ JE′KI∆→∆i , we have ∆i ⊆ ∆i+1. Note here
that, by an inductive argument on the structure of E, JE′KI∆→∆i is well-defined.

To prove the second item, assume that for every (not necessarily proper) fp-subexpression fp∆′:S′ (E′)
of F , we have that E′ is positive in ∆′. Let ∆0 ⊆ ∆1 be two relations over sort(∆). We will show that
for every (not necessarily proper) subexpression G of E:

� if G is positive in ∆, then JGKI∆→∆0 ⊆ JGKI∆→∆1 ; and

� if G is negative in ∆, then JGKI∆→∆0 ⊇ JGKI∆→∆1 .

The proof uses induction on the structure of G, which includes the cases of SPJRUD operators and
fp-operators.

Case G = ∆. Then G is positive in ∆. Obviously, ∆0 = J∆KI∆→∆0 ⊆ J∆KI∆→∆1 = ∆1.

Case G = R with R 6= ∆. Then G is both positive and negative in ∆. Clearly, RI = JRKI∆→∆0 =
JRKI∆→∆1 .

Case G = σA=c (G′). We show the desired result for the case that G is positive in ∆ (the case
that G is negative in ∆ is symmetrical). Then, G′ is positive in ∆. By the induction hy-

pothesis, JG′KI∆→∆0 ⊆ JG′KI∆→∆1 . It follows σA=c

(
JG′KI∆→∆0

)
⊆ σA=c

(
JG′KI∆→∆1

)
. Thus,

JσA=c (G′)KI∆→∆0 ⊆ JσA=c (G′)KI∆→∆1 .

Case G = σA=B (G′). Left as an exercise.

Case G = πX (G′). Left as an exercise.

Case G = G1 on G2. Left as an exercise.

Case G = ρA 7→B (G′). Left as an exercise.

Case G = G1 ∪G2. Left as an exercise.

Case G = G1 −G2. We show the desired result for the case that G is positive in ∆ (the case that
G is negative in ∆ is symmetrical). Then, G1 is positive in ∆, and G2 is negative in ∆.
By the induction hypothesis, JG1KI∆→∆0 ⊆ JG1KI∆→∆1 and JG2KI∆→∆0 ⊇ JG2KI∆→∆1 . Then,
JG1KI∆→∆0 − JG2KI∆→∆0 ⊆ JG1KI∆→∆1 − JG2KI∆→∆1 . Thus, JG1 −G2KI∆→∆0 ⊆ JG1 −G2KI∆→∆1 .

Case G = fp∆′:S′ (G′). Then, G′ is positive in ∆′. Let h be the function defined by h(X) := JG′K(I∆→∆0)
∆′→X .

Let g be the function defined by g(Y) := JG′K(I∆→∆1)
∆′→Y . Let X0 = Y 0 = ∅ and for all

i = 0, 1, . . . , define Xi+1 := h(Xi) and Y i+1 := g(Y i). By the induction hypothesis, h and g are
monotone, and thus, by Property 1, both sequences will reach a fixed point. We now distinguish
two subcases.

6

Case that G is positive in ∆. Then G′ is also positive in ∆. Then, by the induction hypoth-

esis, X1 = JG′K(I∆→∆0)
∆′→∅ ⊆ JG′K(I∆→∆1)

∆′→∅ = Y 1. Then, by applying the induction
hypothesis twice (the first inclusion holds true because G′ is positive in ∆; the second
inclusion holds true because g is monotone):

X2 =
q
G′

y(I∆→∆0)
∆′→X1 ⊆

q
G′

y(I∆→∆1)
∆′→X1

q
G′

y(I∆→∆1)
∆′→X1 ⊆

q
G′

y(I∆→∆1)
∆′→Y 1 = Y 2

It follows X2 ⊆ Y 2. By repeated application of the same reasoning, Xn ⊆ Y n for all n,
hence the fixed point reached by h will be contained in the fixed point reached by g. Thus,
Jfp∆′:S′ (G′)KI∆→∆0 ⊆ Jfp∆′:S′ (G′)KI∆→∆1 .

Case that G is negative in ∆. Then G′ is also negative in ∆. Then, by the induction hy-

pothesis, X1 = JG′K(I∆→∆0)
∆′→∅ ⊇ JG′K(I∆→∆1)

∆′→∅ = Y 1. Then, by applying the induc-
tion hypothesis twice (the first inclusion holds true because G′ is negative in ∆; the second
inclusion holds true because h is monotone):

Y 2 =
q
G′

y(I∆→∆1)
∆′→Y 1 ⊆

q
G′

y(I∆→∆0)
∆′→Y 1

q
G′

y(I∆→∆0)
∆′→Y 1 ⊆

q
G′

y(I∆→∆0)
∆′→X1 = X2

It follows Y 2 ⊆ X2. By repeated application of the same reasoning, Y n ⊆ Xn for all n,
hence the fixed point reached by g will be contained in the fixed point reached by h. Thus,
Jfp∆′:S′ (G′)KI∆→∆0 ⊇ Jfp∆′:S′ (G′)KI∆→∆1 .

In particular, since E is positive in ∆, we obtain f(∆0) = JEKI∆→∆0 ⊆ JEKI∆→∆1 = f(∆1). Thus f is
monotone. This concludes the proof.

We now define SPJRUD+FP as the relational algebra that extends SPJRUD with expressions
fp∆:S (E), possibly nested, where E must have one of the two syntactic forms in Proposition 3. That
is, an expression F is syntactically legal in SPJRUD+FP if either1

1. for every subexpression fp∆:S (E) of F , E is of the form ∆ ∪ E′; or

2. for every subexpression fp∆:S (E) of F , E is positive in ∆.

Of course, given fp∆:S (E), we can decide whether E is of the form ∆ ∪ E′ or whether E is positive
in ∆. Then, by Proposition 3 and Property 1, we know that Jfp∆:S (E)KI will be defined for every
database I. So we have solved the problem raised by Proposition 2, at the price of some syntactic
restrictions. The complexity rises from L to P, as shown next.

Proposition 4. For every expression E in SPJRUD+FP, there exists a polytime algorithm for the
following problem: Given a database I, return JEKI . Therefore, EVAL(E) is in P for every expression
E in SPJRUD+FP.

Proof sketch. Consider the complexity of our new operator fp∆:S (E). By Property 1, a fixed point
will be reached after at most n steps, where n is the cardinality of the set U . For fp∆:S (E), this set
is the set of tuples over S that can be constructed from constants in I. The cardinality of this set
is O(|I||S|), a number that is polynomial in the size of |I| (because in this complexity analysis, E is
fixed, and thus S is fixed).

1Note that we exclude hybrid expressions, like fp∆:A (∆ ∪ (R−∆)) − fp∆′:A (∆′ −R), which combine both forms.
This is because in database theory, it is common to separate logics with ifp-operators (inflationary fp) from logics with
lfp-operators (least fp), which correspond, respectively, to the first and second syntactic form in Proposition 3.

7

6 Fixed Point Operator in Relational Calculus

Let ϕ be a domain-independent formula in relational calculus with free variables x1, . . . , xk. Let ∆ be
a k-ary relation name. Then, we introduce

ψ := [fp∆:x1,...,xk
(ϕ)](y1, . . . , yk) (2)

as a formula with free variables y1, . . . , yk, all distinct. Note that the square brackets [and] are fixed
by the syntax.

We now give the semantics of (2) by providing an equivalent expression in SPJRUD+FP. In Bases
de Données I, we have seen that for every domain-independent relational calculus expression ϕ with free
variables x1, . . . , xk, there exists an algebra expression E in SPJRUD with sort(E) = {Ax1 , . . . , Axk

}
such that for every database I, for all constants c1, . . . , ck,

I |= ϕ(c1, . . . , ck) if and only if {Ax1 : c1, . . . , Axk
: ck} ∈ JEKI

Informally, E and ϕ are equivalent, and the free variables of ϕ correspond one-to-one to the attributes
in sort(E). We define the semantics of (2) as follows:

I |= ψ(c1, . . . , ck) if {Ay1 : c1, . . . , Ayk : ck} ∈
r
ρAx1 ,...,Axk

7→Ay1 ,...,Ayk

(
fp∆:Ax1 ,...,Axk

(E)
)zI

.

Informally, the semantics of (2) computes a fixed point (if it exists) and then renames variables, so
that the free variables of ψ are y1, . . . , yk, which one-to-one correspond to Ay1 , . . . , Ayk .

Example 6. The formula ϕ := [fp∆:xA,xB
(R(xA, xB) ∨ ∃xC (R(xA, xC) ∧∆(xC , xB)))](xD, xE) has

free variables xD and xE , and computes the transitive closure of the relation R. Here, we used
variables xA, xB, xC , . . . to make clear the correspondence with attributes. In relational calculus, we
are generally not interested in named attributes, and will simply write:

ϕ := [fp∆:x,y (R(x, y) ∨ ∃z (R(x, z) ∧∆(z, y)))](u, v).

To illustrate that such formulas can be nested, let ν := ∃x (R(u, x) ∨R(x, u)), a formula with free
variable u that computes the active domain of R. Then, the formula

∀u∀v ((ν(u) ∧ ν(v))→ ϕ)

tests whether R has a directed path from every node to every other node.

Now one may wonder why in (2) we introduce free variables y1, . . . , yk instead of using x1, . . . , xk.
One reason is that with a little extension of our syntax, we can allow some yi’s to be equal to one
another, or to be equal to constants. For example, for k = 3, we could write [fp∆:x1,x2,x3

(ϕ)](y1, c, y1)
with the meaning ∃y2∃y3

(
[fp∆:x1,x2,x3

(ϕ)](y1, y2, y3) ∧ y2 = c ∧ y3 = y1

)
.2

To guarantee the existence of fixed points, we have to impose some syntactic restrictions on the
formula ϕ in (2), equivalent to the restrictions in Proposition 3. The allowed forms are the following:

� ϕ is of the form ∆(x1, . . . , xk) ∨ ϕ′(x1, . . . , xk); or

� ϕ uses only ∀, ∃, ∧, ∨, ¬, and every occurrence of ∆ occurs under the scope of an even number
of negations.

Concerning the second item, we have to rewrite, for example, S(x)∧∀y (∆(x)→ ¬R(x, y)) into S(x)∧
∀y (¬∆(x) ∨ ¬R(x, y)) or S(x)∧¬∃y (∆(x) ∧R(x, y)) to see that ∆ occurs under the scope of an odd
number of negations. Note incidentally that it makes no difference whether one uses universal or
existential quantifiers (or both).

2Something similar happened in Bases de Données I, where the Safe Relational Calculus introduced R(y1, . . . , yk),
with y1, . . . , yk distinct variables, while in practice we like to use constants and repeating variables in such formulas. For
example, we like to write R(x, c, y, y) instead of ∃u∃v (R(x, u, y, v) ∧ u = c ∧ y = v).

8

7 Transitive Closure Logic

Informally, transitive closure logic is the extension of first-order logic with a transitive closure operator.
We define SPJRUD+TC as a sublanguage of SPJRUD+FP. In SPJRUD+TC, whenever we write
fp∆:S (E), then E must be of the syntactically restricted form

E′ ∪ πS
(
ρ ~B 7→ ~C

(
E′

)
on ρ ~A 7→ ~C (∆)

)
,

where for some k,

�
~A = A1, . . . , Ak and ~B = B1, . . . , Bk and ~C = C1, . . . , Ck are sequences of attributes, all distinct;

� for every i ∈ {1, . . . , k}, Ai, Bi ∈ S and Ci 6∈ S;

� sort(E′) = sort(∆) = S.

Notice that S can contain attributes not in {A1, . . . , Ak, B1, . . . , Bk}, and that E′ can itself contain an
fp-operator of the restricted form. It is convenient to introduce a syntactic shorthand for the above
expression:

tc ~A; ~B (E) .

Why would we care about the language SPJRUD+TC which sits between the languages SPJRUD
and SPJRUD+FP? The reason is complexity. We will not discuss the following proposition in detail,
but limit ourselves to saying that NL is a complexity class such that L ⊆ NL ⊆ P.

Proposition 5. For every expression E in SPJRUD+TC, EVAL(E) is in NL.

8 Discussion

� SPJRUD+FP is a theoretically well-founded extension of SPJRUD. With some effort, all defi-
nitions and results in this paper can be translated into relational calculus.3

� SPJRUD+FP allows recursion.

� Every expression in SPJRUD+FP can be evaluated in polynomial time in the size of the input
databases. That is, every query in this language is guaranteed to terminate after at most
polynomially many steps. There is no risk to write infinite loops.

� The syntax is not as nice as Datalog (see later).

� Are there even more expressive algebras/logics that can express problems in NP? Yes, see the
forthcoming course Knowledge Representation & Reasoning, which will be taught from 2019-
2020 on. Note, however, that unless P = NP, a query that solves a problem in NP\P will take
exponential time in the size of the input database, which is completely impractical (databases
are usually “large”).

3I used algebra because I believe that most students find it easier to take off in relational algebra than in relational
calculus (right?).

9

9 Exercises

1. Let E = fp∆:A (∆ ∪ (R− fp∆′:A (∆′ ∪ (R−∆)))).

(a) Obviously, E is of the first form in Proposition 3. Argue that E is also of the second form.

(b) Compute JEKI for a database I containing the following relation:

R A
0
1
.

Note that JEKI has to be computed “from the outside in.”

2. Complete the proof of Proposition 3.

3. Complete the proof of Proposition 4.

4. Proposition 1 tells us that for evaluating an SPJRUD expression, the only auxiliary memory
needed is a constant number of indexes, all of logarithmic size. Why would one need more
auxiliary memory for evaluating an fp-operator?

5. Let ϕ be a formula in the relational calculus, using ∧, ∨, ¬, ∀, ∃. Let ϕ′ be the formula obtained
from ϕ by pushing negations inward as far as possible, using De Morgan’s laws and the related
quantification laws—and canceling double negations. Show that ∆ occurs under the scope of
an odd number of negations in ϕ if and only if ∆ occurs under the scope of an odd number of
negations in ϕ′.

6. Let sort(R) = sort(∆) = {A}. Let E = ∆∪ (R− πA (R on ρA 7→B (∆))). Then, fp∆:A (E) belongs
to SPJRUD+FP, because it is of the first form in Proposition 3 (but not of the second form).

(a) Show that fp∆:A (E) ≡ R.

(b) Let I be a database such that RI = {{A : 0}, {A : 1}}. Show that the mapping f defined
by f(X) := JEKI∆→X has a fixed point that is strictly included in Jfp∆:A (E)KI , which shows
that f is not monotone (by Property 1).

7. Give an expression fp∆:S (E) such that the mapping f defined by f(X) := JEKI∆→X is monotone
but not inflationary.

8. Show that the expressive power of SPJRUD+FP does not decrease if we require that all fp-
operators must be of the form fp∆:S (∆ ∪ E), i.e., the first form in Proposition 3.4

9. Let R be a binary relation that encodes a directed graph. Which vertices are in the answer of
the following query?

{z | [fp∆:x (∃y (R(x, y) ∨R(y, x)) ∧ ∀y (R(y, x)→ ∆(y)))](z) ∧ ∃xR(x, z)}

10. Let R be ternary relation name with sort(R) = {A,B,C}. Let S be a unary relation name with
sort(S) = {A}. An R-tuple {A : p,B : q, C : r} encodes the propositional formula p∧ q → r. An
S-tuple {A : p} encodes that p has truth value true. Write an expression E in SPJRUD+FP
such that sort(E) = {A}. The expression E must return {A : q} for every propositional variable q
that must be true in every model of the formulas in R, given the truth values in S.

4It is also known [Lib04, Corollary 10.12] that the expressive power of SPJRUD+FP does not decrease if we require
that all fp-operators must be of the second form in Proposition 3.

10

For example, for

R A B C
p q r
r s t
q u v

S A
p
q
s

, the result is

E A
p
q
r
s
t

.

It is known that, unless NL = P, E cannot be expressed in SPJRUD+TC. The question whether
NL = P is an important open question in complexity theory.

11. Similar to Exercise 10, but now R is a binary relation with sort(R) = {A,B} and a tuple
{A : p,B : q} encodes the propositional formula p→ q. In this case, the requested expression E
can be written in SPJRUD+TC.

12. Let R be a relation name with sort(R) = {A,B} used to encode a directed graph: a tuple
{A : a,B : b} denotes a directed edge from vertex a to vertex b. Let V := πA (R)∪ρB 7→A (πB (R)),
the set of vertices. Assume sort(∆) = {A}. Let

E := V − ρB 7→A (πB ((V −∆) on R)) .

Verify that E returns each vertex a such that the starting point of every edge that ends in a
belongs to ∆.

Since the only occurrence of ∆ in E occurs within the scope of two (an even number) of −-signs,
the expression fp∆:S (E) belongs to SPJRUD+FP. Let

F := V − fp∆:S (E) .

Write a short English sentence equivalent to F : “F gets every vertex a that . . . ”

13. Let M with sort(M) = {A,B} encode a rooted tree with root 0 such that for some even number k,
every path from 0 to any leaf node has length k. In the following example relation, k = 2. The
path 0→ 2→ 5 is a path from the root to a leaf. Let W with sort(W) = {A} encode a (possibly
empty) set of leaf nodes.

M A B
0 1
0 2
1 3
1 4
2 5
2 6

W A
5
6

Consider now the following game between two players, called α and β, which consists in moving
a pebble down the tree. The players alternate moves. The game starts when player β puts the
pebble on the root node 0. Then, player α chooses a node in the child axis of the pebble’s node,
and moves the pebble to that node. Then, player β chooses a node in the child axis of the
pebble’s node, and moves the pebble to that node. Then again, player α chooses a node in the
child axis of the pebble’s node, and moves the pebble to that node. And so on. The game ends
when a leaf node is reached. Since all paths from the root to any leaf contain an even number
of edges, the last move will be made by player β.

Player α wins the game if the pebble’s node belongs to W at the end of the game; otherwise β
wins. Write an expression for the following question, called the GAME query:

Does player α has a winning strategy, i.e., can she always win the game, no matter
how β plays?

11

Figure 1: Game trees. The black nodes are in W . Image copied from [AHV95]

For the example relation above, player α has a winning strategy: move the pebble from 0 to 2.
Then, player β must move the pebble to 5 or 6, which both belong to W .

Figure 1 shows two other databases. The directed edges represent M -tuples, and the black
nodes are W -tuples. In the database G4,1, player α has a winning strategy: always choose the
left branch. In the database G′4,1, player α has no winning strategy. Indeed, in G′4,1, player β
wins every game by always choosing the left branch.

Hint: Construct a unary relation ∆ with sort(∆) = {A} which stores the winning positions for
player α: if player β moves the pebble to a node in ∆, then player α can win the game, no
matter how player β plays later on. Assume now that player β has just moved the pebble to
node x. Then player α has a winning strategy if the following holds true:

W (x) ∨ ∃y (M(x, y) ∧ ∀z (M(y, z)→ ∆(z)))) .

When you translate this in SPJRUD+FP, you will understand that, when it comes to readability,
relational calculus is often preferable over algebra. ;)

Aside: The GAME query is of interest in database theory, where it is used to show that
SPJRUD+FP is strictly more expressive than Stratified Datalog, a language that will be in-
troduced later on. Indeed, it is known [Kol91] that the GAME query is not expressible in
Stratified Datalog.

14. Difficult exercise. Show that SPJRU+FP has the same expressive power as Datalog.5 Note
that SPJRU+FP has no difference operator.

15. Difficult exercise. A difference E1 − E2 is called atomic if E2 is a single relation name. Let
SPJRUA+FP be the restriction of SPJRUD+FP to expressions in which all difference operators

5Datalog will be defined later on.

12

are atomic. For example, if R and S are relation names such that A ∈ sort(R) = sort(S), then
R − S belongs to SPJRUA+FP, but R − σA=c (S) does not. Show that SPJRUA+FP has the
same expressive power as Semipositive Datalog.6

References

[AHV95] Serge Abiteboul, Richard Hull, and Victor Vianu. Foundations of Databases. Addison-
Wesley, 1995.

[Kol91] Phokion G. Kolaitis. The expressive power of stratified programs. Inf. Comput., 90(1):50–66,
1991.

[Lib04] Leonid Libkin. Elements of Finite Model Theory. Texts in Theoretical Computer Science.
An EATCS Series. Springer, 2004.

6Semipositive Datalog will be defined later on.

13

