
A Primer on the Containment Problem for Conjunctive Queries

Jef Wijsen

February 1, 2021

Abstract

The aim of this primer is to provide a step by step introduction to the theory of conjunctive queries.
Conjunctive queries are very common in database systems, and constitute the building blocks for more
complicated queries. They correspond to the select-project-Cartesian product queries in relational
algebra (commonly called SPC queries1), and are easily encoded as SELECT-FROM-WHERE queries
in SQL. The theory of conjunctive queries has been developed in the database community since the
early days of the relational database model, and turns out to have close connections to other domains
of computer science. In this primer, we show some results in this theory, which are at the same time
fundamental, elegant, and easily understandable to students familiar with the relational database
model.

This primer assumes that students have already studied A Datalog Primer, which is available
at http://informatique.umons.ac.be/ssi/teaching/bdIImons/primerDatalog.pdf. Suggestions,
corrections, and comments are very welcome at jef.wijsen@umons.ac.be.

Contents

1 Conjunctive Queries and Canonical Ground Rules 2
1.1 Conjunctive Queries . 2
1.2 Freezing Variables . 2
1.3 Querying Canonical Bodies . 3
1.4 Conjunctive Queries in Other Languages . 4

2 Query Containment 4
2.1 The Containment Problem . 4
2.2 Detailed Illustration of Proposition 2 . 5
2.3 Proof of Proposition 2 . 6
2.4 The Homomorphism Theorem . 8

3 Minimization of Conjunctive Queries 10
3.1 Minimization . 10
3.2 Uniqueness of Minimal Conjunctive Queries . 12

4 Complexity 12
4.1 Beyond Database Systems . 12
4.2 Data and Query Complexity . 14

5 Unions of Conjunctive Queries 15
5.1 The Containment Problem for UCQs . 15
5.2 Minimization of UCQs . 16
5.3 Beyond UCQ . 16

A A Note on the Complexity of Query Minimization 16

1These correspond to the SPJR queries studied in the course Bases de Données I, where we took the named algebra
perspective that uses on and rename operations instead of Cartesian product.

1

http://informatique.umons.ac.be/ssi/teaching/bdIImons/primerDatalog.pdf

1 Conjunctive Queries and Canonical Ground Rules

This section defines conjunctive queries and some other concepts that will be useful in later sections.

1.1 Conjunctive Queries

Syntax. A conjunctive query is a single Datalog rule such that all predicates in the rule body are EDB
predicates. We will use the syntax of DLV2 in this primer: variables start with uppercase letters, and
constants start with lowercase letters. For example, X is a variable, and x is a constant. For reasons that
will become apparent shortly, we will impose the following requirement:

Requirement of No-Name-Clashes: A conjunctive query must not contain a variable that is
letter-by-letter the same as some constant in the query. For example, if a query contains the
constant an, then no variable in the query must be called AN or An.

An example of a conjunctive query is:

happy(X) :- knows(X,Person), owns(Person,iPad), owns(Person,iPod) (q1)

Thus, X and Person are variables, while iPad and iPod are constants. In this primer, we will not terminate
all rules with a period (.) as required in DLV.

Semantics. Let I be a database instance, and q a conjunctive query. The answer to q on I will be
denoted3 eval(q, I) and is informally defined as follows:

Repeatedly instantiate q, i.e., construct ground rules by replacing variables with constants.
Whenever the body of such a ground rule is a subset of I, then add the rule head to the
answer. In this case, we will also say that the rule head has been inferred from I by means of
(a ground rule of) the query q.

For example, for the database I := {knows(jeb,don), knows(don,jeb), knows(an,don), knows(ed,an),

owns(don,iPad), owns(don,iPod), owns(jeb,iPod)}, the answer to q1 is:

eval(q1, I) = {happy(jeb), happy(an)}.

We have that happy(an) belongs to the answer because q1 can be instantiated by the following ground
rule whose body is a subset of I:

happy(an) :- knows(an,don), owns(don,iPad), owns(don,iPod)

1.2 Freezing Variables

The canonical ground rule of a query q is obtained by changing the first letter of each variable in a
lowercase letter. This operation of changing variables into constants is also called freezing. For example,
the canonical ground rule of q1 is as follows:

happy(x) :- knows(x,person), owns(person,iPad), owns(person,iPod)

Since we imposed the Requirement of No-Name-Clashes, no variable will be “freezed” into a constant
that already occurs in the query. Therefore, the freezing operation can be naturally inverted. In this
primer, the term defrosting will be used for this inverse operation.4

Remark 1.1. We now give a motivation for the Requirement of No-Name-Clashes. Without this re-
quirement, it would be possible to write, for example, answer(Z) : – r(Z,z) and answer(Z) : – r(z,Z).
Since these two queries freeze into the same ground rule answer(z) : – r(z,z), the “defrosting” operation
would not be uniquely defined.

2The DLV system is available at http://www.dlvsystem.com/ and its syntax is described at http://www.dlvsystem.

com/html/DLV_User_Manual.html.
3In Bases de Données I, this was denoted JqKI . I changed the notation in the current primer for readability reasons.
4The term defrosting is not used in the database literature. I introduced it in this primer to help the students’ under-

standing.

2

http://www.dlvsystem.com/
http://www.dlvsystem.com/html/DLV_User_Manual.html
http://www.dlvsystem.com/html/DLV_User_Manual.html

By definition, canonical ground rules do not contain variables. Therefore, the body of a canonical ground
rule is a set of EDB facts, which we will call the canonical body ; the head is a single IDB fact which
will be called the canonical head. Since a database instance was defined as a set of EDB facts (see the
document entitled A Datalog Primer), a canonical body is actually a database instance. The picture is
thus as follows:

happy(x)︸ ︷︷ ︸
canonical
head of q1

: – knows(x,person), owns(person,iPad), owns(person,iPod)︸ ︷︷ ︸
canonical body of q1

Notations. In what follows, we will often write conjunctive queries as H : – B, where H and B are
the head and body respectively. The canonical ground rule will often be denoted as h : – b, using low-
ercase letters. This notation is suggestive, because h : – b is obtained from H : – B by changing the first
(uppercase) letter of each variable in lowercase. We will often use a symbol q to refer to such a query:
the notation q : H : – B is used to indicate that q is the conjunctive query with head H and body B.
Figure 1 summarizes our notations.

In the theoretical treatment, uppercase letters X,Y, Z,X1, Y1, Z1, . . . are variables. Their corresponding
constants are x, y, z, x1, y1, z1, . . .

q : H : – B

h : – b

freeze “defrost”

q : Answer(Y) : – R(c,X), R(X,Y)

Answer(y) : – R(c,x), R(x,y)

freeze “defrost”

Figure 1: Representation (left) and illustration (right) of notations.

1.3 Querying Canonical Bodies

In the study of conjunctive queries, we will often execute a conjunctive query q on the canonical body of
some conjunctive query q′. A particular case is where q is the same query as q′.

Here is a trivial observation:

if q is a conjunctive query with canonical ground rule h : – b, then eval(q, b) contains h.
Informally, when we execute a conjunctive query on its own canonical body, we can always
infer its canonical head.

For example, let b1 := {knows(x,person), owns(person,iPad), owns(person,iPod)}, which is the
canonical body of q1. Then, happy(x) belongs to eval(q1, b1) because it can be inferred by means of the
canonical ground rule of q1, which is repeated next:

happy(x) :- knows(x,person), owns(person,iPad), owns(person,iPod)

It is easily verified that happy(x) is the only fact than can be inferred from b1 by means of q1. However,
in general, if we execute a conjunctive query on its own canonical body, the answer may contain more
than one fact, as illustrated by the following example.

Example 1.1. Consider the following query:

happy(X) :- knows(X,Y), knows(Y,Z), knows(Z,X) (q2)

whose canonical body is:

{ knows(x,y), knows(y,z), knows(z,x) }

Obviously, the canonical ground rule of q2, which is given next, allows us to infer happy(x) from this
canonical body:

3

happy(x) :- knows(x,y), knows(y,z), knows(z,x)

Now we claim that we can also infer happy(y). Indeed, if we apply the replacement X 7→ y, Y 7→ z, Z 7→ x

to q2, we obtain the following ground rule:

happy(y) :- knows(y,z), knows(z,x), knows(x,y)

Note that the body of the latter ground rule is the canonical body of q2, listed in a different order.
Therefore, we can infer that the rule head happy(y) is true. It is an exercise for the student to verify that
happy(z) is also true. Therefore, if we execute q2 on its own canonical body, the answer is {happy(x),
happy(y), happy(z)}.

1.4 Conjunctive Queries in Other Languages

Conjunctive queries can of course be expressed in other languages. Assume a database schema Knows[A,B]
and Owns[B,P]. The query q1 looks as follows in SQL:

SELECT A

FROM Knows, Owns AS O1, Owns AS O2

WHERE Knows.B = O1.B

AND Knows.B = O2.B

AND O1.P=’iPad’

AND O2.P=’iPod’

In relational calculus:

{x | ∃y (Knows(x, y) ∧Owns(y, iPad) ∧Owns(y, iPod))}.

In relational algebra:

πA(Knows on πB(σP=iPad(Owns)) on πB(σP=iPad(Owns))).

Exercise 1.1. Argue that every conjunctive query in Datalog syntax can be expressed as a relational
calculus query that uses only ∃ and ∧ (and parentheses). Argue that every conjunctive query in Datalog
can be expressed in relational algebra without using union or negation.

In database theory, the study of conjunctive queries often uses Datalog syntax because this simplifies the
technical treatment. Indeed, some results (Proposition 2, Theorem 1) can be more elegantly stated and
proved in Datalog syntax, compared to, for example, relational algebra.

2 Query Containment

In this section, we introduce the containment problem for conjunctive queries, and argue that it is of
practical importance in database systems. We then show some elegant solutions to this problem.

2.1 The Containment Problem

Consider the following query:

happy(U) :- knows(U,W), owns(W,iPad) (q3)

It can be easily verified that for every database instance I, the following holds true: if we can infer
happy(c), for some person c, by means of q1, then we can also infer happy(c) by means of q3. Informally,
if a person c knows someone owning both an iPad and an iPod (cf. q1), then c necessarily knows someone
owning an iPad (cf. q3). This relationship between q1 and q3 will be denoted q1 v q3.

Formally, if q1 and q2 are two conjunctive queries, then we write q1 v q2 if for every database instance I,
we have eval(q1, I) ⊆ eval(q2, I). Note that the symbol ⊆ is standard set inclusion. If q1 v q2 holds true,
then we also say that q1 is contained in q2.

The CONTAINMENT PROBLEM for conjunctive queries is the following problem:

INPUT: Two conjunctive queries q1 and q2.

4

QUESTION: Is q1 contained in q2?

This problem is of fundamental interest in database systems, among others, because it allows us to verify
that a complex query can be simplified. Say that two queries q1 and q2 are equivalent, denoted q1 ≡ q2,
if for every database instance I, we have eval(q1, I) = eval(q2, I). For example, in relational algebra,
it is easily verified that E := πA=B(R ∪ πsort(R)(R on S)) is equivalent to simply πA=B(R), which is a
significant simplification in practice (because joins are expensive). Now it is obvious to see that q1 ≡ q2
holds true if and only if both q1 v q2 and q2 v q1 hold true. Therefore, to test whether two queries are
equivalent, it is sufficient to solve two instances of the CONTAINMENT PROBLEM.

Importantly, we cannot practically solve the CONTAINMENT PROBLEM by a procedure that tests
eval(q1, I) ⊆ eval(q2, I) for every database instance I. Indeed, in case that eval(q1, I) ⊆ eval(q2, I) holds
true, such a procedure would never terminate, as there are infinitely many database instances.

We now show a really awesome result: to test q1 v q2 for conjunctive queries, it suffices to consider only
one database instance, which is the canonical body of q1. If the answer to q1 is included in the answer to
q2 on this canonical body, then the answer to q1 is included in the answer to q2 on any database instance.
This is expressed by the following proposition.

Proposition 1. Let q1 and q2 be conjunctive queries. Let the canonical ground rule of q1 be h1 : – b1.
Then,

1. if eval(q1, b1) ⊆ eval(q2, b1), then q1 v q2; and
2. if eval(q1, b1) * eval(q2, b1), then q1 6v q2.

In the next section, we will actually show a slightly stronger and more practical result:

Proposition 2. Let q1 and q2 be conjunctive queries. Let the canonical ground rule of q1 be h1 : – b1.
Then,

1. if h1 ∈ eval(q2, b1), then q1 v q2; and
2. if h1 /∈ eval(q2, b1), then q1 6v q2.

The difficult part to prove is the first item of Proposition 2.

Exercise 2.1 (Easy). Prove the second item of Proposition 1, and the second item of Proposition 2.

Exercise 2.2 (Easy). In Section 2.3, we will prove the first item of Proposition 2. Argue that the first
item of Proposition 1 is an immediate corollary of the first item of Proposition 2.

2.2 Detailed Illustration of Proposition 2

We illustrate Proposition 2 by an example. To this end, we recall our query q1:

happy(X) :- knows(X,Person), owns(Person,iPad), owns(Person,iPod) (q1)

The canonical ground rule of q1 is composed as follows:

happy(x)︸ ︷︷ ︸
canonical

head of q1,
called h1

: – knows(x,person), owns(person,iPad), owns(person,iPod)︸ ︷︷ ︸
canonical body of q1, called b1 from here on

We next recall our query q3:

happy(U) :- knows(U,W), owns(W,iPad) (q3)

Let b1 be the canonical body of q1, and let h1 be the canonical head of q1 (as indicated above). The
replacement U 7→ x, W 7→ person instantiates q3 as follows:

happy(x) :- knows(x,person), owns(person,iPad)

Since the body of this instantiation is a subset of b1, we can infer its head, that is:

happy(x) ∈ eval(q3, b1).

5

Since happy(x) = h1, we have h1 ∈ eval(q3, b1). It follows from Proposition 2 that q1 v q3.

We now argue why q1 v q3 must be true without using Proposition 2. To this end, let I be an arbitrary
database instance, and assume that for some constant a, we have that happy(a) is an answer to q1 on I,
that is, happy(a) ∈ eval(q1, I). Then, for some constant b, there must be an instantiation of q1 that
looks as follows:

happy(a)︸ ︷︷ ︸
inferred

head

: – knows(a,b), owns(b,iPad), owns(b,iPod)︸ ︷︷ ︸
subset of I, called b′1 from here on

Now the replacement U 7→ a, W 7→ b instantiates q3 as follows:

happy(a) :- knows(a,b), owns(b,iPad)

Since the body of this instantiation is a subset of I (because it is a subset of b′1, which itself is a subset
of I), we can infer its head, that is:

happy(a) ∈ eval(q3, I).

Since I and a were chosen arbitrarily, it is correct to conclude q1 v q3. Note that if our argumentation
of q1 v q3 would have used x instead of a, and person instead of b, then it would coincide with our
illustration of Proposition 2 in the beginning of this section.

Exercise 2.3. Here are two conjunctive queries.

q4 : answer(X,U) : – r(X,R,S), r(V,S,U), r(X,Y,Z), r(Y,Z,U), r(U,Y,W)

q5 : answer(X,V) : – r(X,Y,Z), r(X,Y,V), r(Y,Z,V), r(V,Y,W)

Use Proposition 2 and the DLV system to verify whether either query is contained in the other.

Solution. Freezing q5 gives us:

answer(x,v)︸ ︷︷ ︸
canonical

head of q5,
called h5

: – r(x,y,z), r(x,y,v), r(y,z,v), r(v,y,w)︸ ︷︷ ︸
canonical body of q5, called b5 from here on

The result eval(q4, b5) is computed by means of the following DLV program.

answer(X,U) :- r(X,R,S), r(V,S,U), r(X,Y,Z), r(Y,Z,U), r(U,Y,W).

r(x,y,z). r(x,y,v). r(y,z,v). r(v,y,w).

Running this program in DLV yields the following output:

DLV [build BEN/Dec 17 2012 gcc 4.6.1]

{r(x,y,z), r(x,y,v), r(y,z,v), r(v,y,w), answer(x,v)}

Since answer(x,v) is in the output, Proposition 2 tells us that q5 v q4. We leave it is an exercise to test
whether or not q4 v q5 holds true.

2.3 Proof of Proposition 2

The proof of Proposition 2 essentially generalizes the example of Section 2.2 to an arbitrary conjunctive
query. Since the proof provides interesting insights into conjunctive queries, we spell it out in the current
section.

We will need the notion of valuation, which is a formalization of what we called “instantiation” or
“replacement” so far. A valuation µ for a conjunctive query q is a function that maps every variable of q
to a constant, for example, µ = {X 7→ a, Y 7→ b, Z 7→ c}.
Informally, a valuation assigns a value (i.e., a constant) to each variable. A valuation for a conjunctive
query q can be naturally extended to the head and the body of that query. For example, the above
valuation µ maps r(X,X, Y, c, d) to r(a, a, b, c, d). Note that this valuation did not change the rightmost
constants c and d. In general, it is understood that a valuation maps every constant to itself. For another
example, if B = {P (X,Y), P (Y, Z)}, then µ(B) = {P (a, b), P (b, c)}. Using the notion of valuation, the
semantics of conjunctive queries can be stated as follows (in a box, because it is important).

6

q2 : H2 : – B2

q1 : H1 : – B1

h1 : – b1

f : – I

Θ

θ

freezeµ “defrost”

θ ◦ µ

Figure 2: Visualization of the proof [of the first item] of Proposition 2.

Semantics. Then, for every query q : H : – B, database instance I, and fact f , the following two
statements are equivalent (by definition):

� f ∈ eval(q, I); and

� there exists a valuation µ for q such that µ(B) ⊆ I and µ(H) = f .

We will now give a formal proof of the first item in Proposition 2. The flow of the proof is illustrated in
Fig. 2. Let q1 and q2 be as follows:

q1 : H1 : – B1

q2 : H2 : – B2

Assume that the canonical ground rule of q1 is as follows:

h1 : – b1

Recall that the canonical ground rule of q1 is obtained from q1 by changing the first letter of each variable
in a lowercase letter. Our hypothesis in Proposition 2 is:

h1 ∈ eval(q2, b1). (1)

We need to show q1 v q2.

To show q1 v q2, we imagine an arbitrary database I and an arbitrary fact f such that

f ∈ eval(q1, I). (2)

It suffices to show f ∈ eval(q2, I). The reason why this suffices is that I and f are chosen arbitrarily.5

Let us first spell out the meaning of (2): there exists a valuation Θ for q1 such that

Θ(H1) = f and Θ(B1) ⊆ I. (3)

In other words, (2) means that we can instantiate q1 into a ground rule f : – Θ(B1) such that Θ(B1) ⊆ I.
Θ maps uppercase variables X,Y, Z, . . . to constants that occur in the database. Now we use a small
notational trick: we define θ as the mapping that is the same as Θ except that it applies to the lowercase
strings x, y, z, . . . That is, for every variable X in q1, we define θ(x) := Θ(X). Furthermore, for every
constant c in q1, we define θ(c) := c. We note here that θ is a well-defined function because of the
Requirement of No-Name-Clashes.

5This reasoning should be familiar to the student. Remember, for example, that A ⊆ B is often proved as follows:
imagine an arbitrary element x in A, and prove that x is also in B.

7

Remark 2.1. Without the Requirement of No-Name-Clashes, it would be possible to write, for example,
q : happy(MisterX) : – knows(MisterX, misterX). Now assume we have Θ(MisterX) = jeb. Our
definition would require both θ(misterx) = jeb and θ(misterx) = misterx, and therefore θ would not
be a well-defined function. See also Remark 1.1.

It is also correct (and insightful) to think of θ as the composition “Θ after defrost,” as suggested in
Fig. 2.

Since h1 : – b1 is obtained from H1 : – B1 by replacing X,Y, Z, . . . with x, y, z, . . . , it is easily verified that
θ(h1) = Θ(H1) and θ(b1) = Θ(B1). Then, by (3), we obtain the following:

θ(h1) = f and θ(b1) ⊆ I. (4)

We now spell out the meaning of our hypothesis, which was given by (1): there exists a valuation µ for
q2 such that

µ(H2) = h1 and µ(B2) ⊆ b1. (5)

If we apply θ on (5), we obtain:

θ (µ(H2)) = θ(h1) and θ (µ(B2)) ⊆ θ(b1). (6)

Now let θ ◦µ be the function such that for every X, we have (θ ◦ µ) (X) := θ (µ(X)). Note that ◦ denotes
the function composition operation, which should be familiar to the student. It is easily verified that
θ ◦ µ is a valuation. From (4) and (6), we obtain:

(θ ◦ µ) (H2) = f and (θ ◦ µ) (B2) ⊆ I.

In other words, it is possible to instantiate q2 into a ground rule f : – (θ ◦ µ) (B2) such that (θ ◦ µ) (B2) ⊆
I. This tells us that f ∈ eval(q2, I), which concludes the proof.

2.4 The Homomorphism Theorem

In this section, we will state a result that in database theory is known as the Homomorphism Theorem.
It is basically a different way for stating Proposition 2.

Look again at Fig. 2, which illustrates how the hypothesis h1 ∈ eval(q2, b1) (which is Equation (1)) leads
to the conclusion q1 v q2. Consider the mapping “defrost after µ,” which we will call Γ. Informally, the
Homomorphism Theorem can be discovered in the following three steps:

1. Let X be a variable that occurs in B2. If µ maps X to some constant u, then Γ maps X to the
variable U . Recall here that U freezes into u, and therefore u defrosts into U . Since Γ maps X to a
variable, it is not a valuation (because valuations map to constants, not to variables). Substitutions,
on the other hand, can map a variable to a variable.

2. By “defrosting” (5), we obtain that for the substitution Γ, it holds that Γ(B2) ⊆ B1 and Γ(H2) =
H1. Such a substitution will be called a homomorphism from q2 to q1. That is, a homomorphism
from q2 to q1 is a substitution that maps the body of q2 into the body of q1, and maps the head of
q2 to the head of q1.

3. Now the Homomorphism Theorem states what you may already expect from Fig. 2:

q1 v q2 if and only if there is a homomorphism from q2 to q1.

The nice thing about this theorem is that it talks only about (the bodies and heads of) q1 and
q2. In particular, unlike Proposition 2, the Homomorphism Theorem does not refer to the frozen
body b1 or the frozen head h1 of q1.

Example 2.1. Consider once more the following two queries:

q1 : happy(X) : – knows(X,Person), owns(Person,iPad), owns(Person,iPod)

q3 : happy(U) : – knows(U,W), owns(W,iPad)

The substitution Γ := {U 7→ X, W 7→ Person} is a homomorphism from q3 to q1. Indeed, if we apply that
substitution to q3, we obtain the head of q1 together with a subset of the body of q1:

Γ(q3) : happy(X) : – knows(X,Person), owns(Person,iPad)

8

Then, the Homomorphism Theorem tells us that q1 v q3.

There exists no homomorphism from q1 to q3, because no substitution can map the atom owns(Y,iPod)

to an atom of q1. Then, the Homomorphism Theorem tells us q3 6v q1.

We will now introduce the Homomorphism Theorem in a formal way.

A substitution for a conjunctive query q is a function that maps every variable of q to either a variable
or a constant. It is also understood that a substitution maps every constant to itself. A valuation is a
special case of a substitution, i.e., every valuation is a substitution.

Theorem 1 (Homomorphism Theorem). Let q1 : H1 : – B1 and q2 : H2 : – B2 be two conjunctive
queries. Then,

q1 v q2 if and only if
there exists a substitution Γ for q2 such
that Γ(B2) ⊆ B1 and Γ(H2) = H1.

Such a substitution Γ, if it exists, is also called a homomorphism from q2 to q1.

The implication =⇒ immediately follows from the technical treatment in Section 2.3, and can be read off
from Fig. 2. Indeed, assume q1 v q2, which is the situation depicted in that figure. The homomorphism
Γ is given by “defrost after µ.” The proof of the ⇐= -direction is left as an exercise.

Exercise 2.4. Consider the queries q4 and q5 of Exercise 3.1, where it was shown that q5 v q4. By
Theorem 1 there exists a homomorphism from q4 to q5. Give this homomorphism.

Exercise 2.5. An endomorphism is a homomorphism from a query q to itself. Verify that for the query
q0 : answer(X) : – r(X,Y), r(Y,X), r(X,Z), the substitution Γ0 = {X 7→ X, Y 7→ Y, Z 7→ Y} is an
endomorphism. Can you explain why Γ0 is important in the perspective of query optimization?

Exercise 2.6. In Example 1.1, we saw that the execution of a conjunctive query on its own canonical
body can yield a query answer with cardinality > 1. If this happens, what can we say about the existence
of homomorphisms?

Solution. Consider a conjunctive query q : answer(X) : – B such that |eval(q, b)| > 1, where b be the
canonical body of q. For simplicity, assume that q contains no constants. Since answer(x) ∈ eval(q, b)
is obvious, there is a constant y such that answer(y) ∈ eval(q, b) and y 6= x. Therefore, there is a
valuation µ for q such that µ(B) ⊆ b and µ(X) = y. Using our hypothesis that q contains no constants,
we can conclude that there is a substitution Γ for q such that Γ(B) ⊆ B and Γ(X) = Y ; note that
Γ = “defrost after µ.” Now consider the query:

q′ : answer(Y) : – Γ(B).

Clearly, Γ is a homomorphism from q to q′ (and therefore q′ v q by Theorem 1). An example is given
next.

%%% Let q be as follows.

answer(X) :- r(X,Y), r(Y,X), r(Y,Y).

%%% The substitution { X7→Y, Y7→Y } gives the following query called q’.

answer(Y) :- r(Y,Y).

Verify that in the preceding example, there exists no homomorphism from q′ to q. The substitution in
this example maps the body {r(X,Y), r(Y,X), r(Y,Y)} to a strict subset of that body.6

Example 1.1 illustrates the case Γ(B) = B, i.e., Γ(B) is not a strict subset of B. Then Γ must necessarily
map distinct variables to distinct variables, and therefore Γ is a bijection. In that case, q and q′ are the
same up to a renaming of variables.

Exercise 2.7. Give a proof of Theorem 1.

Solution.

Proof. =⇒ Assume q1 v q2. By Proposition 2, we have h1 ∈ eval(q2, b1), where h1 : – b1 is the
canonical ground rule of q1. That is, there exists a valuation µ for q2 such that µ(H2) = h1 and
µ(B2) ⊆ b1. Let Γ be the substitution for q2 such that for every variable X in q2, for every variable Y in

6A is a strict subset of B if both A ⊆ B and A 6= B.

9

q1, we have Γ(X) = Y if µ(X) = y. Informally, Γ maps X to the variable uppercase-Y if µ maps X to
the corresponding constant lowercase-y. It is now easily verified that Γ(B2) ⊆ B1 and Γ(H2) = H1.

⇐= Assume there is a substitution Γ for q2 such that Γ(B2) ⊆ B1 and Γ(H2) = H1. Let µ be the
valuation such that for every variable X in q2, for every variable Y in q1, we have µ(X) = y if Γ(X) = Y .
Informally, µ is “freeze after Γ.” Clearly, µ(B2) ⊆ b1 and µ(H2) = h1. Therefore, h1 ∈ eval(q2, b1). By
Proposition 2, q1 v q2.

3 Minimization of Conjunctive Queries

Query minimization is an important step in query optimization. A conjunctive query with n atoms in
its body, say R1(~x1), . . . , Rn(~xn), can be easily implemented by joining n relations (which requires n− 1
binary joins), followed by zero or more selections and one projection. Since joins are costly operations,
it is significant to minimize the number n of atoms in the body. In this section, we will study this
minimization problem.

3.1 Minimization

Students are encouraged to make Exercise 2.5 before reading on, because that exercise illustrates what
will happen in this section. We start with another example.

Example 3.1. Let

q1 : answer(X) : – r(X,Y), r(Y,X), r(X,U), r(U,V), r(V,W), r(W,X)

q2 : answer(U) : – r(U,W), r(W,U)

If we execute the following DLV program

r(u,w). r(w,u).

answer(X) :- r(X,Y), r(Y,X), r(X,U), r(U,V), r(V,W), r(W,X).

we get the answer {answer(u), answer(w)}. Since the canonical head of q2 belongs to this answer,
Proposition 2 allows us to conclude that q2 v q1. Then, by Theorem 1, there must be a homomorphism
from q1 to q2. Before reading further, the student is encouraged to find this homomorphism.

It is easily verified that the substitution µ := {X 7→ U, Y 7→ W, U 7→ W, V 7→ U, W 7→ W} is a homomorphism
from q1 to q2. Furthermore, the substitution θ := {U 7→ X, W 7→ Y} is a homomorphism from q2 to q1, and
therefore, by Theorem 1, q1 v q2.

Now consider the composition θ ◦ µ, which is as follows:

θ ◦ µ = {X 7→ θ(U), Y 7→ θ(W), U 7→ θ(W), V 7→ θ(U), W 7→ θ(W)}
= {X 7→ X, Y 7→ Y, U 7→ Y, V 7→ X, W 7→ Y}.

If we apply θ ◦µ to q1, we obtain the following query (duplicates have been removed from the rule body):

q′1 : answer(X) : – r(X,Y), r(Y,X)

From our construction, it follows that θ ◦ µ is a homomorphism from q1 to q′1. Moreover, the identity
substitution {X 7→ X, Y 7→ Y} is a homomorphism from q′1 to q1. By Theorem 1, we have q′1 v q1 and
q1 v q′1, and therefore q′1 ≡ q1. In conclusion, we have simplified q1 into q′1.

In general, given a conjunctive query q, an important task is to find a query that is equivalent to q and
that has a body of minimal cardinality. QUERY MINIMIZATION is the following task:

INPUT: A conjunctive query q : H : – B.

QUESTION: Find an equivalent conjunctive query with a cardinality-minimal body.

Example 3.1 suggests that, given a conjunctive query q, an equivalent query with a cardinality-minimal
body can be obtained by deleting atoms from the body of q. We will show next that this suggestion is
indeed correct.

10

The cardinality of a set S is denoted by |S|. Consider a conjunctive query q : H : – B. Now let
qmin : Hmin : – Bmin be a conjunctive query equivalent to q with a cardinality-minimal body. That is,
qmin ≡ q and every conjunctive query q′ equivalent to q has a body with at least |Bmin| atoms.

It can be easily seen that such a query qmin must exist, even though we may not know yet how to find it.
We show next that such a query qmin can always be obtained by deleting zero, one, or more atoms from
the body of q.

Since qmin ≡ q, we have q v qmin and qmin v q.
By Theorem 1, there exists some homomorphism µ from q to qmin, and another homomorphism θ from
qmin to q. This situation is depicted in Fig. 3.

q : H : – B

qmin : Hmin : – Bmin

µ θ

θ ◦ µ

Figure 3: The composition θ ◦ µ is an endomorphism that minimizes q.

Thus,

µ(B) ⊆ Bmin (7)

µ(H) = Hmin (8)

θ(Bmin) ⊆ B (9)

θ(Hmin) = H (10)

For the composition θ ◦ µ, we have the following:

� For the bodies, we have (θ ◦ µ) (B) = θ (µ(B)). It follows from (7) that (θ ◦ µ) (B) ⊆ θ(Bmin).
Consequently, by (9), we have (θ ◦ µ) (B) ⊆ B.

� For the heads, we have (θ ◦ µ) (H) = θ (µ(H)). It follows from (8) that (θ ◦ µ) (H) = θ(Hmin).
Consequently, by (10), we have (θ ◦ µ) (H) = H.

Now consider the following conjunctive query q′:

q′ : H : – B′ with B′ := (θ ◦ µ) (B)

It is easily verified that θ ◦ µ is a homomorphism from q to q′. Indeed, (θ ◦ µ) (B) ⊆ B′ holds true by
construction, and (θ ◦ µ) (H) = H holds true by the second item above. Therefore, by Theorem 1, we
have q′ v q. Moreover, the substitution that maps every variable to itself is a homomorphism from q′ to
q, because (i) the body of q′ is a subset of the body of q (see first item above), and (ii) q′ and q have the
same head. Therefore, by Theorem 1, we have q v q′.
It is now correct to conclude q ≡ q′, where q′ was obtained from q by deleting zero, one, or more
atoms from the body. So far so good. But the most important thing remains to be shown, namely
that |B′| = |Bmin|. Note that |B′| < |Bmin| is impossible, because of our hypothesis that qmin has a
cardinality-minimal body.

Well, from (θ ◦ µ) (B) ⊆ θ(Bmin) and B′ = (θ ◦ µ) (B), it follows B′ ⊆ θ(Bmin). It can be easily verified
that |θ(Bmin)| ≤ |Bmin|, because the application of a substitution cannot increase the number of atoms.
Since a subset cannot have more elements than its superset, we have |B′| ≤ |θ(Bmin)| ≤ |Bmin|. Therefore,
the query q′ is what we were looking for: a query equivalent to q with a cardinality-minimal body that
can be obtained by deleting atoms from the body of q.

11

3.2 Uniqueness of Minimal Conjunctive Queries

We now show an easy but interesting result: every conjunctive query with a cardinality-minimal body
is unique up to a renaming of its variables. This is sometimes also stated as follows: if two minimized
conjunctive queries are equivalent, then they are isomorphic.

Assume two equivalent conjunctive queries q1 ≡ q2, both with cardinality-minimal bodies. Let q1 :
H1 : – B1 and q2 : H2 : – B2. From the reasoning in Section 3.1, it follows |B1| = |B2|. By Theorem 1,
there exists a homomorphism µ from q1 to q2, and a homomorphism θ from q2 to q1. As argued in
Section 3.1, θ ◦ µ is a homomorphism from q1 to itself, that is, (θ ◦ µ) (H1) = H1 and (θ ◦ µ) (B1) ⊆ B1.
Since q1 is minimized, it must be the case that (θ ◦ µ) (B1) = B1. Therefore, every variable that occurs
in B1 must also occur in (θ ◦ µ) (B1). But this implies that both µ and θ must be injective, i.e., they
cannot map distinct variables to a same variable. Therefore, q1 and q2 are the same up to a renaming of
variables.

Example 3.2. Consider again the queries of Example 3.1, after minimization.

q′1 : answer(X) : – r(X,Y), r(Y,X)

q2 : answer(U) : – r(U,W), r(W,U)

These two queries are indeed the same up to a renaming of their variables.

4 Complexity

In this section, we show that the study of conjunctive queries is relevant also outside the scope of database
systems. Indeed, it turns out that many notorious problems in computer science can be formulated in
terms of containment of conjunctive queries.

4.1 Beyond Database Systems

We will establish a relationship between containment of conjunctive queries and 3-COLORABILITY, which
is the following problem:

INPUT: An undirected graph.

QUESTION: Is the graph 3-colorable, i.e., is it possible to color the vertices with three colors (red,
blue, green) such that no two adjacent vertices have the same color?

An instance of this problem is the undirected graph of Fig. 4. We claim that 3-COLORABILITY is the
same as the CONTAINMENT PROBLEM for conjunctive queries. Consider the following two queries,
called qgraph and qrgb, using DLV syntax.

% The query qgraph is:

coloring : – e(A,B), e(B,C), e(C,D), e(D,E), e(E,F), e(F,G), e(G,H), e(H,A), e(D,H),

e(B,F), e(I,C), e(C,J), e(J,G), e(G,I), e(A,I), e(B,H), e(E,J), e(A,E).︸ ︷︷ ︸
body of qgraph, called Bgraph from here on

% The query qrgb is:

coloring : – e(red,green), e(green,blue), e(blue,red),

e(green,red), e(blue,green), e(red,blue).︸ ︷︷ ︸
body of qrgb, called Brgb from here on

The predicate coloring has arity 0; it acts like a propositional variable: the answer to qgraph or qrgb can
be {coloring} or {}, which can be interpreted as true and false respectively. The query qgraph encodes
the undirected graph of Fig. 4: every undirected edge {X, Y} is encoded as either e(X,Y) or e(Y,X) (either
choice is fine). The query qrgb encodes all ordered pairs of two distinct colors among red, green, blue.
Now we ask the question:

Is qrgb contained in qgraph, i.e., do we have qrgb v qgraph?

12

A

B

C

D

E

F

G

H

I

J

Figure 4: Undirected graph.

By Theorem 1, this question is the same as:

Is there a substitution for qgraph that maps Bgraph into
Brgb? In other words, is there a homomorphism from
qgraph to qrgb?

Note that we can ignore rule heads, since they are the same in both queries. We claim that if such a
substitution exists, then the graph of Fig. 4 is 3-colorable. To this end, assume that Θ is a substitution
that maps Bgraph into Brgb. Note that Θ is actually a valuation, because it maps every variable in
A,B,C,...,J to a constant among red, green, blue. This valuation cannot map two adjacent vertices
to the same color, because Brgb does not contain e(red,red), e(green,green), e(blue,blue).

Conversely, we claim that if the graph of Fig. 4 is 3-colorable, then there is a valuation mapping Bgraph

into Brgb. The proof of this claim is straightforward and left as an exercise.

To conclude, asking whether a graph is 3-colorable is the same as asking whether qrgb is contained in the
query encoding that graph.

Finally, note that by Proposition 2, qrgb v qgraph is equivalent to coloring ∈ eval(qgraph,Brgb). The
latter condition can be tested by the following DLV program.

%%% Query q_graph

coloring :- e(A,B), e(B,C), e(C,D), e(D,E), e(E,F), e(F,G), e(G,H), e(H,A), e(D,H),

e(B,F), e(I,C), e(C,J), e(J,G), e(G,I), e(A,I), e(B,H), e(E,J), e(A,E).

%%% Body of q_rgb

e(red,green). e(green,blue). e(blue,red).

e(green,red). e(blue,green). e(red,blue).

When this DLV program is executed, it turns out that coloring is not in the answer. Therefore, it is
correct to conclude that the graph of Fig. 4 is not 3-colorable.

Exercise 4.1. The query qgraph encodes every undirected edge {X, Y} as either e(X,Y) or e(Y,X) (but
not both). Show that this encoding is correct for our purpose, and that there is no need to encode an
edge as both e(X,Y) and e(Y,X).

Exercise 4.2. We first recall some notions from graph theory, which are useful for this exercise. An
undirected graph is a pair G = (V,E) where V is a finite set of vertices and E is a set of pairs of distinct
vertices. The pairs in E are called edges. An endomorphism of G is a total function f : V → V such

13

C

D

B

A

Figure 5: Undirected graph.

that for every edge {s, t} in E, we have that {f(s), f(t)} is also an edge in E. Obviously, if f maps two
distinct vertices to a same vertex, then f is not bijective and {f(s) | s ∈ V } is a strict subset of V .

For V ′ ⊆ V , the subgraph of G induced by V ′ is the undirected graph whose set of vertices is V ′, and whose
edges are all those edges of E that are included in V ′. For example, for G = (V,E) with V = {a, b, c, d}
and E = {{a, b}, {b, c}, {c, d}, {d, a}, {a, c}}, the subgraph induced by {b, c, d} has edges {b, c} and {c, d}
(and has no other edges).

A core of G is a smallest subgraph of G for which every endomorphism is a bijective.

Consider now the conjunctive query:

c :- e(A,B), e(B,A), e(B,C), e(C,B), e(C,D), e(D,C), e(A,D), e(D,A), e(A,C), e(C,A).

The body of this query encodes the undirected graph of Fig. 5. Note that for every undirected edge
{X, Y}, the body contains both e(X,Y) and e(Y,X). Compute (by hand and/or by relying on DLV) a
minimized query that is equivalent to the above query. Can you give a graph-theoretical interpretation
of this minimized query? Would that interpretation still be correct if edges {X, Y} would be encoded as
either e(X,Y) or e(Y,X) (but not both).

4.2 Data and Query Complexity

In A Datalog Primer, it was argued that every stratified Datalog program executes in polynomial time.
Every conjunctive query is a Datalog program, and can thus be executed in polynomial time (and even
in logarithmic space—see the document entitled Adding Recursion to SPJRUD). That is, for every fixed
conjunctive query q, the following problem can be solved in polynomial time:

Data Complexity.

INPUT: A database instance I.

QUESTION: Compute eval(q, I).

On the other hand, 3-COLORABILITY is known to be an NP-complete problem, which means that if
P 6= NP (which is mostly believed), then 3-COLORABILITY cannot be solved in polynomial time.

It is correct to conclude that if P 6= NP, then 3-COLORABILITY cannot be solved by a conjunctive
query.

But wait a minute. . . Haven’t we showed in Section 4.1 that 3-COLORABILITY can be solved by a con-
junctive query? No, we haven’t. . . What we showed in that section is that for the fixed database instance
defined as Brgb := {e(red,green), e(green,blue), e(blue,red), e(green,red), e(blue,green),
e(red,blue)}, the following problem cannot be solved in polynomial time (under the assumption P 6=
NP):

Query Complexity.

INPUT: A conjunctive query q with head coloring.

QUESTION: Is coloring ∈ eval(q,Brgb)?

In the database literature, we distinguish between data complexity and query complexity of query evalu-
ation, depending on whether the database instance or the query is considered as the input. In database

14

systems, data complexity is the more significant complexity measure, because database instances are
typically very much larger than queries. Note that our query qgraph is atypical in this respect, because
its body is an undirected graph, which can be very large. The analysis in the current section shows that
the query complexity for conjunctive queries is higher than the data complexity: NP-complete versus
logspace.

5 Unions of Conjunctive Queries

In this section, we show that the results for conjunctive queries proved so far can be easily extended
to incorporate also union (or disjunction). However, these results fail if we also add negation or recur-
sion.

5.1 The Containment Problem for UCQs

A Union of Conjunctive Queries (UCQ) is a finite set of conjunctive queries, all with the same head
predicate. For example, the following UCQ consists of three conjunctive queries:

happy(X) :- owns(X,iPad)

happy(Person) :- owns(Person,iPod)

happy(X) :- knows(X,Person), owns(Person,iPad), owns(Person,iPod)

Formally, a UCQ Q is a finite set {q1, q2, . . . , qn} of conjunctive queries, all with the same head predicate.
The answer to Q on a database I, denoted eval(Q, I), is equal to eval(q1, I)∪eval(q2, I)∪· · ·∪eval(qn, I).
Informally, every conjunctive query is executed, and the answers are grouped together.

The CONTAINMENT PROBLEM for conjunctive queries and UCQs is the following problem:

INPUT: A conjunctive query q, a UCQ Q = {q1, q2, . . . , qn}.
QUESTION: Is it the case that q v Q, i.e., do we have eval(q, I) ⊆ eval(Q, I) for every database

instance I?

We will show the following result.

Proposition 3. Let q be a conjunctive query and Q = {q1, q2, . . . , qn} a UCQ.
Then, q v Q if and only if for some i ∈ {1, . . . , n}, we have q v qi.
The implication ⇐= in Proposition 3 is trivial. On the other hand, the direction =⇒ may be surprising
at first sight. Note, for example, that in set theory, A ⊆ A1 ∪ A2 ∪ · · · ∪ An does not imply that A is
contained in some Ai. For example, for A = {1, 2}, A1 = {1}, and A2 = {2}, we have that A ⊆ A1 ∪A2,
but A * A1 and A * A2.

Like the earlier containment results for conjunctive queries, the proof of =⇒ in Proposition 3 uses that
canonical bodies are database instances. To prove this direction, assume q v Q. Let q be the query
q : H : – B, and let h : – b be its canonical ground rule. Clearly, h ∈ eval(q, b). By our hypothesis that
q v Q, it follows h ∈ eval(Q, b). Since eval(Q, b) = eval(q1, b) ∪ eval(q2, b) ∪ · · · ∪ eval(qn, b), it follows
that there must be i ∈ {1, . . . , n} such that h ∈ eval(qi, b). Then, by Proposition 2, q v qi, which
concludes the proof.

The CONTAINMENT PROBLEM for UCQs is the following problem:

INPUT: Two UCQs P = {p1, p2, . . . , pm} and Q = {q1, q2, . . . , qn}.
QUESTION: Is it the case that P v Q, i.e., do we have eval(P, I) ⊆ eval(Q, I) for every database

instance I?

Proposition 4. Let P and Q be as previously stated, Then, P v Q if and only if for every i ∈ {1, . . . ,m},
there exists j ∈ {1, . . . , n} such that pi v qj.
Exercise 5.1. Prove Proposition 4. Hint: The proof is a simple extension of the proof of Proposition 3.

15

Exercise 5.2. Show that the language of UCQs has the same expressive power as SPJRU, i.e., the
relational algebra without difference. To this end, show that each of the following equivalences is correct:

σA=c(E ∪ F) ≡ σA=c(E) ∪ σA=c(F)

σA=B(E ∪ F) ≡ σA=B(E) ∪ σA=B(F)

πX(E ∪ F) ≡ πX(E) ∪ πX(F)

ρA 7→B(E ∪ F) ≡ ρA 7→B(E) ∪ ρA 7→B(F)

E on (F ∪G) ≡ (E on F) ∪ (E on G)

(E ∪ F) on G ≡ (E on G) ∪ (F on G)

Then show the following: repeated application of these equivalences (from left to right) rewrites an SPJRU
expression E into an equivalent expression of the form E1 ∪ E2 ∪ · · · ∪ E` where each Ei is union-free
(i.e., each Ei is a conjunctive query). Note that the last two rules result in an exponential blowup in the
size of the query (but that does not matter if we are only concerned about data complexity).

5.2 Minimization of UCQs

QUERY MINIMIZATION for UCQs is the following task:

INPUT: A UCQ Q = {q1, . . . , qn}.
QUESTION: Find a smallest UCQ equivalent to Q.

Now, the minimization consists in two tasks:

1. if qi v qj with i 6= j, then remove qi; and

2. minimize all rule bodies.

For example, in the following UCQ, the last rule is redundant and can therefore be removed.

happy(X) :- owns(X,iPad)

happy(X) :- owns(X,iPod)

happy(X) :- owns(X,iPad), owns(X,iPod)

Exercise 5.3. Minimize the following UCQ.

answer(X) :- r(Y,X), r(X,Y), r(X,Z), r(Z,X)

answer(Z) :- r(X,Y), r(Y,Z), r(Z,V), r(V,X)

Show that the result of Section 3.2 extends to UCQs: for every UCQ, there is a unique (up to variable
renaming) equivalent UCQ that has a minimal total number of atoms.

5.3 Beyond UCQ

Proposition 4 implies that there exists an algorithm for the CONTAINMENT PROBLEM for UCQs, and
therefore we can also effectively check whether two UCQs are equivalent.

The CONTAINMENT PROBLEM for languages L1 and L2 is the following problem:

INPUT: A query q1 ∈ L1 and a query q2 ∈ L2.

QUESTION: Is q1 v q2?

In many studies, it will be the case that L1 = L2, in which case we speak about the CONTAINMENT
PROBLEM for the language L1. It is known that there exists no algorithm for the CONTAINMENT
PROBLEM for relational algebra. Likewise, there exists no algorithm for the CONTAINMENT PROBLEM
for positive Datalog with recursion. By positive Datalog, we mean Datalog without negation. Thus, the
CONTAINMENT PROBLEM for UCQs is decidable, but becomes undecidable as soon as we add negation
or recursion.

A A Note on the Complexity of Query Minimization

Assume that we are given an undirected graph, for example, the graph of Fig. 4. Now consider the
following two conjunctive queries, which we call qlong and qshort respectively:

16

%%% query q_long

coloring :- e(A,B), e(B,C), e(C,D), e(D,E), e(E,F), e(F,G), e(G,H), e(H,A), e(D,H),

e(B,F), e(I,C), e(C,J), e(J,G), e(G,I), e(A,I), e(B,H), e(E,J), e(A,E),

e(red,green), e(green,blue), e(blue,red),

e(green,red), e(blue,green), e(red,blue).

and

%%% query q_short

coloring :- e(red,green), e(green,blue), e(blue,red),

e(green,red), e(blue,green), e(red,blue).

Note that qshort is a query without variables, which is strange, but not forbidden. It is easily verified
that qshort is a minimal query.

Now let us ask the question:

Is qlong equivalent to qshort? In other words, if we solve the problem QUERY MINIMIZATION
with qlong as input, do we find qshort as output?

Reasoning along the lines of Section 4.1, it can easily be verified that the answer to this question is “yes”
if the graph of Fig. 4 is 3-colorable; and “no” if that graph is not 3-colorable.

The foregoing shows that an algorithm for QUERYMINIMIZATION can be used to solve 3-COLORABILITY.
Now it is known that if P 6= NP, then 3-COLORABILITY cannot be solved by a polynomial-time algorithm.
Consequently, if P 6= NP, then there is no polynomial-time algorithm for QUERY MINIMIZATION.

17

	Conjunctive Queries and Canonical Ground Rules
	Conjunctive Queries
	Freezing Variables
	Querying Canonical Bodies
	Conjunctive Queries in Other Languages

	Query Containment
	The Containment Problem
	Detailed Illustration of Proposition 2
	Proof of Proposition 2
	The Homomorphism Theorem

	Minimization of Conjunctive Queries
	Minimization
	Uniqueness of Minimal Conjunctive Queries

	Complexity
	Beyond Database Systems
	Data and Query Complexity

	Unions of Conjunctive Queries
	The Containment Problem for UCQs
	Minimization of UCQs
	Beyond UCQ

	A Note on the Complexity of Query Minimization

