
α-Acyclic Joins

Jef Wijsen

April 28, 2021

Outline

Motivation

Full Reducer: Definition

Full Reducer: Existence and Construction

Computing an α-Acyclic Join

Join Trees

Computing a Projection of an α-Acyclic Join

New Join Algorithms

Distributed Join

I M[NN,Field of Study ,Year] stores data about 5000 students
of UMONS. The relation M is stored in Mons.

I B[NN, Street,Number ,City] stores the addresses of
10.000.000 Belgian citizens. The relation B is stored in
Brussels.

I Question: Get M on B in Mons.

I Solution:
I Compute πNN (M) in Mons and ship the result (5000 national

numbers) to Brussels.
I Compute B on (πNN (M)) in Brussels and ship the result (5000

tuples of B) to Mons.
I Compute M on (B on (πNN (M))) in Mons.

Distributed Join

I M[NN,Field of Study ,Year] stores data about 5000 students
of UMONS. The relation M is stored in Mons.

I B[NN, Street,Number ,City] stores the addresses of
10.000.000 Belgian citizens. The relation B is stored in
Brussels.

I Question: Get M on B in Mons.
I Solution:

I Compute πNN (M) in Mons and ship the result (5000 national
numbers) to Brussels.

I Compute B on (πNN (M)) in Brussels and ship the result (5000
tuples of B) to Mons.

I Compute M on (B on (πNN (M))) in Mons.

Terminology

I New operator called semijoin: B nM gets the set of tuples in
B that join with some tuple of M (on the common attribute
NN).

I The tuples of B not in B nM are said to be dangling with
respect to the join of the relations in {B,M}.

Note that n is not a primitive operator in SPJRUD:

I R n S ≡ πsort(R) (R on S)

I R n S ≡ R on πsort(R)∩sort(S) (S)

Remarkable Result (FYI only)

Let SPnRUD denote relational algebra with semijoin but without
join.

Theorem
The following problem is decidable: Given two expressions E and F
in SPnRUD, decide whether E ≡ F .

Joining Three or More Relations

R A B
1 2
2 4 ∗
3 6 ∗
4 8 ∗

S B C
1 2 ∗
2 4
3 6 ∗
4 8 ∗

T C D
1 2 ∗
2 4 ∗
3 6 ∗
4 8

R on S on T A B C D
1 2 4 8

I As it turns out, all ∗-tuples are dangling with respect to
{R, S ,T}.

I It would be interesting to remove dangling tuples prior to the
join.

I Can we recognize (and remove) dangling tuples by using only
semijoins?

Outline

Motivation

Full Reducer: Definition

Full Reducer: Existence and Construction

Computing an α-Acyclic Join

Join Trees

Computing a Projection of an α-Acyclic Join

New Join Algorithms

Simplifying Notations

I R[A,B] means “relation name R with sort(R) = {A,B}.”
I We use R where sort(R) is expected. For example,

R n S = πR (R on S).

I We use R where RI is expected (where I is a database).

I A schema S is a finite set of relation names. We will assume
that sort(·) does not map distinct relation names to the same
set of attributes.
=⇒ We can use sort(R) where R is expected.

I If S = {R1,R2, . . . ,Rn}, then onS is a shorthand for
R1 on R2 on · · · on Rn.

For example, we can write AB on BC on CD.

Removing Dangling Tuples by Means of Semijoins

I A tuple t ∈ Ri is dangling with respect to S := {R1, . . . ,Rn} if

t 6∈ πRi
(R1 on R2 on · · · on Rn) ≡ Ri n

(
on (S \ {Ri})

)
.

I A semijoin program is a finite sequence of instructions of the
form

R := R n S

The semantics of this instruction is: remove from R all tuples
that are dangling with respect to {R,S}.

I A semijoin program is a full reducer for S if it removes all
tuples that are dangling with respect to S (for every database).

Counterexample

The semijoin program

AB := AB n BC

BC := BC n CD

CD := CD n BC

is not a full reducer for {AB,BC ,CD}, as shown by:

R A B
1 2

S B C
2 4

T C D

Example of a Full Reducer

The semijoin program

BC := BC n AB (1)

CD := CD n BC (2)

BC := BC n CD (3)

AB := AB n BC (4)

is a full reducer for {AB,BC ,CD}. Why?

Lines (2) and (3) remove from BC ∪ CD all tuples that are dangling with

respect to {BC ,CD}. But before that, (1) has removed from BC all

tuples that do not join with AB. Thus, after (3), no tuples of BC ∪ CD

are dangling with respect to {AB,BC ,CD}. Finally, (4) removes from

AB all tuples that are dangling with respect to {AB,BC ,CD}.

Schema Without Full Reducer

There is no full reducer for {AB,BC ,AC}, as shown by:

R A B
a b
d e

S B C
b c
e f

U A C
d c
a f

Indeed, no tuples are removed by:

AB := AB n BC

AB := AB n AC

BC := BC n AB

BC := BC n AC

AC := AC n AB

AC := AC n BC

Outline

Motivation

Full Reducer: Definition

Full Reducer: Existence and Construction

Computing an α-Acyclic Join

Join Trees

Computing a Projection of an α-Acyclic Join

New Join Algorithms

Which Schemas Have a Full Reducer?

The hypergraph of S has vertex set
⋃

R∈S sort(R) and hyperedge
set {sort(R) | R ∈ S}. Hypergraphs generalize undirected graphs
by allowing edges with three or more vertices.

For example, the hypergraph of S := {ABC ,ACE ,AEF ,CDE}:

Ears

I A hyperedge E is an ear of another hyperedge F if the
attributes in E \ F belong to no other hyperedge than E .

I A hyperedge E is also an ear if its attributes belong to no
other hyperedge than E .

A
B

C
D

J

K L

E F

G

H H is an ear.
E is an ear of F .
E is not an ear of G , nor of H.
G is an ear of F .
G is not an ear of E , nor of H.
F is not an ear of some other hyperedge.

Ear Removal or GYO Reduction

GYO=Graham-Yu-Özsoyoglu
The GYO-reduction of a hypergraph is obtained by applying ear
removal until no more removals are possible. A hypergraph is
α-acyclic if its GYO-reduction is the empty hypergraph; otherwise
it is α-cyclic.

A schema is α-acyclic if its hypergrpah is α-acyclic.

Exercise. Show the following:

I E ear of F & F ear of G =⇒ E ear of G ;

I the GYO-reduction of a hypergraph is unique, independent of
the sequence of ear removals chosen;

I an undirected graph is acyclic iff it is α-acyclic.

Theorem
A schema has a full reducer iff it is α-acyclic.

Observation

The extension of an α-cyclic schema can be α-acyclic:

I {AB,BC ,AC} is α-cyclic;

I {AB,BC ,AC ,ABC} is α-acyclic.

Proof of ⇐= : An α-Acyclic Schema Has a Full Reducer

Assume the GYO reduction of α-acyclic schema S first removes E ,
ear of F . Construct the full reducer:

F := F n E (5)

full reducer of S \ {E} (6)

E := E n F (7)

E F
A B

C
D

After line (5), all tuples in F join with [some tuple of] E . After (6), if g is a

tuple in some relation G ∈ S \ {E}, then g is not dangling with respect to

S \ {E}. That is, on (S \ {E}) will contain a tuple t such that t[G] = g . Since

t[F] ∈ F , t[F] will join with E . But then the entire tuple t will join with E

(because all attributes common to E and S \ {E} belong to F). Consequently,

g will not be dangling with respect to S. Finally, line (7) makes sure that no

tuple of E will be dangling with respect to S.

Outline

Motivation

Full Reducer: Definition

Full Reducer: Existence and Construction

Computing an α-Acyclic Join

Join Trees

Computing a Projection of an α-Acyclic Join

New Join Algorithms

Join Order

Assume we have executed the full reducer:

F := F n E

full reducer of S \ {E}
E := E n F

In what order will we join the relations of S?

Compute on (S \ {E}) in Result

Result := E on Result

The computation in the box is applied recursively until S \ {E} is
a single relation.

Exercise. Show that the size of Result will not decrease.

Example AB on BC on CD

Remove AB, ear of BC . Then, in {BC ,CD}, remove BC , ear of
CD. Finally, remove CD.

BC := BC n AB

CD := CD n BC

BC := BC n CD

AB := AB n BC

Result := CD

Result := BC on Result

Result := AB on Result

Thus, AB on (BC on CD), after removal of dangling tuples.

Exercise. Show that BC on (AB on CD) is a bad join order, even if
there are no dangling tuples.

Exercises

Exercise. Show that a schema S is α-acyclic if and only if

1. S = ∅, or

2. S has an ear E and S \ {E} is α-acyclic.

Exercise. Show that S is α-acyclic if and only if all the attributes
of S can be deleted by repeatedly applying the following two
operations:

1. delete an attribute that occurs in only one hyperedge;

2. delete a hyperedge that is contained in another hyperedge.

Exercise. Let Schema be a binary relation that stores a schema S
as follows: a fact Schema(A,R) means that A is an attribute and
R a relation name such that A ∈ sort(R). Is there a program in
Stratified Datalog that checks whether S is α-acyclic?

Outline

Motivation

Full Reducer: Definition

Full Reducer: Existence and Construction

Computing an α-Acyclic Join

Join Trees

Computing a Projection of an α-Acyclic Join

New Join Algorithms

Join Trees

A join tree of a hypergraph1 S is a tree (i.e., a connected acyclic
undirected graph) whose vertices are the hyperedges of S such that
the following condition holds:

Connectedness Condition: For every attribute A, the subgraph of
the tree induced by the vertices that contain A is
connected.

ABC

ACE

AEF

CDE

Theorem
A schema has a join tree iff it is α-acyclic.

1We blur the distinction between schemas and hypergraphs.

Proof that an α-Acyclic Schema Has a Join Tree
Assume an α-acyclic schema. Construct a tree as follows: if E is
removed as an ear of F , then E is made a child of F in the tree.
Assume, toward a contradiction, that the resulting tree is not a
join tree. Then, there must be a path that is like the red path or
the blue path in the figure below. Explain why the existence of
either path leads to a contradiction.

A

A

A

A

B

B

B

B

B

Proof that a Schema with a Join Tree is α-Acyclic

Assume a schema S with a join tree τ . We will show that S has a
GYO reduction that removes all hyperedges. The proof is by
induction on the number n of hyperedges in the schema (which is
equal to the number of vertices in τ).

Induction basis n = 1. The single hyperedge is an ear and can be
removed.

Induction step n ≥ 2. Construct a rooted tree by designating some
vertex of τ as the root. In the rooted tree, let E be a
leaf node whose parent is F . Then, E is an ear of F ,
because if A ∈ E \ F , then the Connectedness
Condition implies that A occurs nowhere else in the
tree. If we remove E from τ , we obtain a join tree of
S \ {E} (Why?). By the induction hypothesis,
S \ {E} has a GYO reduction that removes all
hyperedges.

Any Vertex Can be Picked as the Root

ABC BF

BCD DEG

CDE

ABC

BF

BCD

DEG

CDE

Outline

Motivation

Full Reducer: Definition

Full Reducer: Existence and Construction

Computing an α-Acyclic Join

Join Trees

Computing a Projection of an α-Acyclic Join

New Join Algorithms

Computing a Projection on X of an α-Acyclic Join

Yannakakis’ Algorithm for computing πX

(
onS

)
with α-acyclic S:

(i) Apply a full reducer.

(ii) Construct a rooted join tree for S.

(iii) Visit each node of the rooted join tree, other than the root, in
some bottom-up order. When we visit E whose parent is F
(where E ,F ∈ S), we execute

F := πF∪(X∩E) (E on F) .

(iv) Project the relation at the root onto X .

πAG (ABC on BCD on BF on CDE on DEG)

A B C
1 3 4
2 3 4

B F
3 8
3 9

B C D
3 4 5
3 4 6

D E G
5 7 10
5 7 11
6 7 10

C D E
4 5 7
4 6 7

πAG (ABC on BCD on BF on CDE on DEG)

B F
3 8
3 9

A B C D
1 3 4 5
1 3 4 6
2 3 4 5
2 3 4 6

D E G
5 7 10
5 7 11
6 7 10

C D E
4 5 7
4 6 7

πAG (ABC on BCD on BF on CDE on DEG)

A B C D
1 3 4 5
1 3 4 6
2 3 4 5
2 3 4 6

D E G
5 7 10
5 7 11
6 7 10

C D E
4 5 7
4 6 7

πAG (ABC on BCD on BF on CDE on DEG)

D E G
5 7 10
5 7 11
6 7 10

A C D E
1 4 5 7
1 4 6 7
2 4 5 7
2 4 6 7

πAG (ABC on BCD on BF on CDE on DEG)

A C D E G
1 4 5 7 10
1 4 5 7 11
1 4 6 7 10
2 4 5 7 10
2 4 5 7 11
2 4 6 7 10

A G
1 10
1 11
2 10
2 11

Theorem
At every execution of step (iii) in Yannakakis’ algorithm, the
intermediate result does not contain more than IU tuples, where I
and U are the number of tuples in the input and output,
respectively.

Proof.

𝐸1 𝐸𝑘

𝐹

… …

𝑺′

Let F ∈ S, and let E1, . . . ,Ek be the children
of F that have already been visited. Let S′ be
the subset of S indicated on the figure. Then,

the relation stored at F is πYF

(
onS′

)
, where Y

contains the attributes of X that appear in some
hyperedge of S′ but not in F .

Obviously, |πYF

(
onS′

)
| ≤ |πY

(
onS′

)
| × |πF

(
onS′

)
|. Then,

I since we have applied a full reducer, every intermediate Y -value will

appear in the final result. Thus, |πY

(
onS′

)
| ≤ U; and

I since every tuple in πF

(
onS′

)
is in the input, |πF

(
onS′

)
| ≤ I .

Outline

Motivation

Full Reducer: Definition

Full Reducer: Existence and Construction

Computing an α-Acyclic Join

Join Trees

Computing a Projection of an α-Acyclic Join

New Join Algorithms

Note About the α-Cyclic “Triangle Query” I
I An algorithm is said to run in Ω(f (n)) (Big-Omega) time if

there exists a constant k such that on inputs of sufficiently
large size n, the algorithm uses at least k × f (n) steps.

I Consider AB on AC on BC with |AB| = |AC | = |BC | = N.
Any of the three join plans below must run in time Ω(N2).
Why?

Figure copied from [NRR13].

How large can |AB on AC on BC | be?

Note About the α-Cyclic “Triangle Query” II
How large can |AB on AC on BC | be?
Let πA (AB) ∩ πA (AC) = {a1, . . . , an}. Then,

AB on AC on BC =
n⋃

i=1

((σA=ai (AB) on σA=ai (AC)) on BC)

Consequently,

|AB on AC on BC | ≤
n∑

i=1

min (|σA=ai (AB)| · |σA=ai (AC)|, |BC |)

Since min(x , y) ≤ √xy ,

|AB on AC on BC | ≤
n∑

i=1

√
|σA=ai (AB)| · |σA=ai (AC)| · |BC |

=
√
|BC | ·

n∑
i=1

√
|σA=ai (AB)| ·

√
|σA=ai (AC)|

Note About the α-Cyclic “Triangle Query” III

Cauchy-Schwarz (
n∑

i=1

xiyi

)2

≤

(
n∑

i=1

x2
i

)
·

(
n∑

i=1

y 2
i

)
n∑

i=1

xiyi ≤

√√√√ n∑
i=1

x2
i ·

√√√√ n∑
i=1

y 2
i

Thus,

|AB on AC on BC | ≤
√
|BC | ·

√√√√ n∑
i=1

|σA=ai (AB)| ·

√√√√ n∑
i=1

|σA=ai (AC)|

=
√
|BC | ·

√
|AB| ·

√
|AC |

If |AB| = |AC | = |BC | = N, then the above is O(N
3
2).

Note About the α-Cyclic “Triangle Query” IV

Algorithm copied from [NRR13].

Example

R A B
a1 1
a1 3
a1 5
a2 5

T A C
a1 2
a1 4
a2 4
a2 6

S B C
1 2
3 4
5 4

L = {a1, a2}.
For a1, we execute lines 5–7 of Algorithm 1 (because
3 · 2 = 6 ≥ |S |), for a2, we execute lines 9–11 (because
1 · 2 = 2 < |S |).

(Recall: there exists no full reducer for {AB,AC ,BC}.)

Exercises

Exercises taken from [Ull89].

Turing Award 2020

For fundamental algorithms and theory underlying pro-
gramming language implementation and for synthesizing
these results and those of others in their highly influential
books, which educated generations of computer scientists.

Exercise on an α-acyclic join
Let S = {A1A2,A2A3, . . . ,An−1An}, where for
i ∈ {1, 2, . . . , n − 1}, AiAi+1 is the following relation.2

Ai Ai+1

1 2
1 4
2 1
2 3
3 2
3 4
4 1
4 3

This relation contains all pairs 〈i , j〉 where i , j ∈ {1, 2, 3, 4} such
that i and j are not both odd and are not both even. Show that:

1. S is α-acyclic;

2. no tuple of any AiAi+1 is dangling with respect to S; and

3. the join A1A2 on A2A3 on · · · on An−1An contains 2n+1 tuples.

2Note that by abuse of notation, we confuse R and sort(R).

Exercise on a join that is not α-acyclic

Let S = {A1A2,A2A3, . . . ,An−1An,AnA1}, where AiAi+1 and
AnA1 are the “odd-even” relations of the previous question. Show
that:

1. S is α-cyclic;

2. no semijoin program can affect the input relations;

3. any join AjAj+1 on Aj+1Aj+2 on · · · on A`−1A` of strictly less
than n relations contains 2`−j+2 tuples; and

4. if n is odd, the join A1A2 on A2A3 on · · · on An−1An on AnA1 of
n relations is empty.

Question on Yannakakis’s algorithm

Show that in step (iii) of Yannakakis’s algorithm for
πX (R1 on · · · on Rn), we can skip the join, with its parent, of any
relation E such that no attribute of E is in X .

For example, for πAG (ABC on BCD on BF on CDE on DEG), we
can skip the join of BF with ABCD.

A B C
1 3 4
2 3 4

B F
3 8
3 9

B C D
3 4 5
3 4 6

D E G
5 7 10
5 7 11
6 7 10

C D E
4 5 7
4 6 7

B F
3 8
3 9

A B C D
1 3 4 5
1 3 4 6
2 3 4 5
2 3 4 6

D E G
5 7 10
5 7 11
6 7 10

C D E
4 5 7
4 6 7

A B C D
1 3 4 5
1 3 4 6
2 3 4 5
2 3 4 6

D E G
5 7 10
5 7 11
6 7 10

C D E
4 5 7
4 6 7

Exercise on Yannakakis’s algorithm

Consider the query

πAEJK (AB on BCD on DE on BFG on FHI on IK on HJ) .

1. Construct the hypergraph for the join and show that it is
acyclic.

2. Find a parse tree for the hypergraph in which BFG is the root.

3. Construct a full reducer for this join, using the ear-reduction
sequence that corresponds to your parse tree from (2).

4. Give the sequence of steps performed by Yannakakis’
algorithm after the full reducer sequence of steps from (3).

Solution

𝐴

𝐵

𝐶
𝐷 𝐸

𝐹 𝐺

𝐻𝐾 𝐼

𝐽

𝐴

𝐵

𝐶
𝐷 𝐸

𝐹 𝐺

𝐻𝐾 𝐼

𝐽
𝐴

𝐵

𝐶
𝐷 𝐸

𝐹 𝐺

𝐻𝐾 𝐼

𝐽

𝐴

𝐵

𝐶
𝐷 𝐸

𝐹 𝐺

𝐻𝐾 𝐼

𝐽

𝐴

𝐵

𝐶
𝐷 𝐸

𝐹 𝐺

𝐻𝐾 𝐼

𝐽

𝐴

𝐵

𝐶
𝐷 𝐸

𝐹 𝐺

𝐻𝐾 𝐼

𝐽

𝐴

𝐵

𝐶
𝐷 𝐸

𝐹 𝐺

𝐻𝐾 𝐼

𝐽

𝐴

𝐵

𝐶
𝐷 𝐸

𝐹 𝐺

𝐻𝐾 𝐼

𝐽

𝐴

𝐵

𝐶
𝐷 𝐸

𝐹 𝐺

𝐻𝐾 𝐼

𝐽

𝐹𝐻𝐼

𝐻𝐽 𝐼𝐾

𝐹𝐻𝐼

𝐻𝐽

𝐵𝐹𝐺

𝐹𝐻𝐼
𝐴𝐵 𝐵𝐶𝐷

𝐻𝐽 𝐼𝐾 𝐷𝐸

𝐵𝐹𝐺

𝐹𝐻𝐼
𝐴𝐵 𝐵𝐶𝐷

𝐻𝐽 𝐼𝐾 𝐷𝐸

𝐵𝐹𝐺

𝐹𝐻𝐼

𝐻𝐽 𝐼𝐾

𝐵𝐹𝐺

𝐹𝐻𝐼
𝐴𝐵

𝐻𝐽 𝐼𝐾

BFG (7)

FHI (3)

HJ (1) IK (2)

AB (4)
BCD (6)

DE (5)

FHI := FHI n HJ
FHI := FHI n IK

BFG := BFG n FHI
BFG := BFG n AB
BCD := BCD n DE
BFG := BFG n BCD
BCD := BCD n BFG

DE := DE n BCD
AB := AB n BFG

FHI := FHI n BFG
IK := IK n FHI

HJ := HJ n FHI

FHI := πFHIJ (FHI on HJ)
FHI := πFHIJK (FHI on IK)
BFG := πBFGJK (BFG on FHI)
BFG := πABFGJK (BFG on AB)
BCD := πBCDE (BCD on DE)
BFG := πAEJK (BFG on AB)

Same exercise, stated in “Datalog notation”

Consider the conjunctive query

Answer(a, e, j , k)← R(a, b),S(b, c , d),T (d , e),U(b, f , g),
V (f , h, i),W (i , k),Q(h, j).

Give an efficient algorithm to answer this query.

References

Hung Q. Ngo, Christopher Ré, and Atri Rudra.
Skew strikes back: new developments in the theory of join
algorithms.
SIGMOD Record, 42(4):5–16, 2013.

Jeffrey D. Ullman.
Principles of Database and Knowledge-Base Systems, Volume
II.
Computer Science Press, 1989.

	Motivation
	Full Reducer: Definition
	Full Reducer: Existence and Construction
	Computing an -Acyclic Join
	Join Trees
	Computing a Projection of an -Acyclic Join
	New Join Algorithms

