
Logical Implication for Full Dependencies

Jef Wijsen

April 28, 2023

1 / 24

Full Dependencies

Full dependencies are closed formulas of the following form:

equality generating (fegd)

∀x⃗

 premise︷ ︸︸ ︷
R1(x⃗1) ∧ · · · ∧ Rℓ(x⃗ℓ)→ s = t

where each of s, t is either a variable that also occurs
in the premise or a constant.

tuple generating (ftgd)

∀x⃗ (R1(x⃗1) ∧ · · · ∧ Rℓ(x⃗ℓ)→ S(y⃗))

where each variable that occurs in y⃗ also occurs in
the premise.

Note: The quantifier block ∀x⃗ will be omitted.

2 / 24

Example

▶ Functional dependencies are fegds.
Multivalued and join dependencies are ftgds.

▶

P SS# Name Birth Nat
123 Smith 1964 USA
456 Jones 1970 GB

N Nat
USA
GB
NL

P(x , y1, z1,w1),P(x , y2, z2,w2) → y1 = y2

P(x , y1, z1,w1),P(x , y2, z2,w2) → z1 = z2

P(x , y1, z1,w1),P(x , y2, z2,w2) → w1 = w2

P(x , y , z ,w) → N(w)

P(x , y , z ,Europe) → 0 = 1

3 / 24

Logical Implication

Definition (Logical implication)

Let Σ be a finite set of full dependencies, and let σ be a full
dependency. We say that Σ logically implies σ, denoted Σ |= σ, if
every database instance that satisfies all dependencies of Σ also
satisfies σ.

Question: Is there an algorithm that takes as input some Σ and σ,
and returns “yes” if Σ |= σ, and “no” otherwise?

Explain why the definition of |= cannot be used as an algorithm.

4 / 24

The Chase Algorithm
Question: Does Σ logically imply
some fegd R1(x⃗1) ∧ · · · ∧ Rℓ(x⃗ℓ)→ s = t
or some ftgd R1(x⃗1) ∧ · · · ∧ Rℓ(x⃗ℓ)→ S(y⃗)?
Algorithm (sketch)

1. Start with

canonical database︷ ︸︸ ︷
{R1(x⃗1), . . . ,Rℓ(x⃗ℓ)} → right-hand side.

2. Minimally modify this canonical database in order to satisfy
all dependencies in Σ:
▶ an fegd of Σ may force you to make two variables equal (by a

substitution), or to make a variable equal to a constant (by a
valuation). Always make the same changes to the right-hand
side (i.e., to s = t or S(y⃗));

▶ an ftgd of Σ may force you to add a fact to the canonical
database.

3. Return “yes, because there is no counterexample” as soon as
you are forced to make two distinct constants equal (denoted
by E). If you do not end with E but your final dependency is
trivial, also return “yes, because there is no counterexample”;
otherwise return “no, because I found a counterexample”. 5 / 24

Example

σ1 : Knows(x , y),Knows(y , z)→ A(x , z)

σ2 : Knows(x , u),Knows(v , z)→ A(x , z)

Does {σ2} logically imply σ1?
Here is a chase of σ1 by {σ2}:

σ1 : Knows(x , y),Knows(y , z)→ A(x , z)

Apply σ2 : Knows(x , y),Knows(y , z),A(x , z)→ A(x , z)

Apply σ2 : Knows(x , y),Knows(y , z),A(x , z),A(y , y)→ A(x , z)

Since the last ftgd is trivial, return “yes, it is the case
that {σ2} |= σ1.”

6 / 24

Example

σ1 : Knows(x , y),Knows(y , z)→ A(x , z)

σ2 : Knows(x , u),Knows(v , z)→ A(x , z)

Does {σ1} logically imply σ2?
Here is a chase of σ2 by {σ1}:

σ2 : Knows(x , u),Knows(v , z)→ A(x , z)

Since σ1 is not applicable, the chase immediately terminates.

The canonical database {Knows(x , u),Knows(v , z)} satisfies {σ1}
and falsifies σ2, hence {σ1} ̸|= σ2.

When viewed as conjunctive queries: σ1 ⊑ σ2 but σ2 ̸⊑ σ1.

7 / 24

Example

Does {⋊⋉ [AC ,ABD],B → C} logically imply A→ C? Let

σ1 : R(x , y ′, z ,w ′),R(x , y , z ′,w)→ R(x , y , z ,w)

σ2 : R(x1, y , z1,w1),R(x2, y , z2,w2)→ z1 = z2

σ3 : R(x , y1, z1,w1),R(x , y2, z2,w2)→ z1 = z2

Obviously, σ1 ≡⋊⋉ [AC ,ABD], σ2 ≡ B → C , and σ3 ≡ A→ C .

Here is a chase of σ3 by {σ1, σ2}:

σ3 : R(x , y1, z1,w1),R(x , y2, z2,w2)→ z1 = z2

Apply σ1 : R(x , y1, z1,w1),R(x , y2, z2,w2),R(x , y2, z1,w2)→ z1 = z2

Apply σ2 : R(x , y1, z1,w1),R(x , y2, z1,w2)→ z1 = z1

Since the last fegd is trivial, return “yes, it is the case that
{σ1, σ2} |= σ3.”

8 / 24

Example

Does {R(x)→ x = a,R(x)→ x = b} logically imply
R(v)→ S(v)?

A chase of R(v)→ S(v) by {R(x)→ x = a, R(x)→ x = b}:

Initial fegd : R(v)→ S(v)

Apply R(x)→ x = a : R(a)→ S(a)

Apply R(x)→ x = b : a = b E

Since we are forced to make a and b equal, return “yes, it is the
case that {R(x)→ x = a,R(x)→ x = b} |= R(v)→ S(v).”

9 / 24

Example
Let

σ1 : R(x , y)→ R(y , x)

σ2 : R(x , y), S(y , z),R(z , u),S(u, x)→ y = u

σ3 : R(x , y), S(y , z),R(z , u),S(u, x)→ S(x , u)

Does {σ1, σ2} logically imply σ3?
A chase of σ3 by {σ1, σ2}:

σ3 : R(x , y),S(y , z),R(z , u), S(u, x)→ S(x , u)

Apply σ2 : R(x , u), S(u, z),R(z , u),S(u, x)→ S(x , u)

Apply σ1 : R(x , u),R(u, x), S(u, z),R(z , u), S(u, x)→ S(x , u)

Apply σ1 : R(x , u),R(u, x),S(u, z),R(z , u),R(u, z), S(u, x)→ S(x , u)

The canonical database {R(x , u), R(u, x), S(u, z), R(z , u),
R(u, z), S(u, x)} satisfies {σ1, σ2} and falsifies σ3, hence
{σ1, σ2} ̸|= σ3.

10 / 24

Chase finds a most general counterexample (if it exists)
Assume R[ABCDE]. We have {A→ B,B → C} ̸|= A→ D, as
witnessed by

I =
R A B C D E

a b c d1 e
a b c d2 e

Start at A→ D : R(u, v1,w1, x1, y1),R(u, v2,w2, x2, y2)→ x1 = x2
There is a valuation ν mapping R(u, v1,w1, x1, y1) to
R(a, b, c, d1, e), and R(u, v2,w2, x2, y2) to R(a, b, c, d2, e).

Apply A→ B : We apply {v2 7→ v1} giving
R(u, v1,w1, x1, y1),R(u, v1,w2, x2, y2)→ x1 = x2

Apply B → C : We apply {w2 7→ w1} giving
R(u, v1,w1, x1, y1),R(u, v1,w1, x2, y2)︸ ︷︷ ︸

J

→ x1 = x2

The substitution µ := {v2 7→ v1,w2 7→ w1} maps the “body” of A → D
to J, while µ(x1) = x1 and µ(x2) = x2. Thus, J is a “counterexample”!

ν = {u 7→ a, v1 7→ b,w1 7→ c, x1 7→ d1, y1 7→ e, x2 7→ d2, y2 7→ e, . . .} is a
homomorphism from J to I . Note that y1 and y2 are both mapped to e.

11 / 24

Proof: If Σ ̸|= fegd, the chase ends with a ‘counterexample’
Assume Σ ̸|= L0 → s0 = t0. There exist (i) a database instance I s.t.
I |= Σ, and (ii) a valuation ν s.t. ν(L0) ⊆ I and ν(s0) ̸= ν(t0).

Assume the chase sequence is:

L0 → s0 = t0
L1 → s1 = t1
...

...
Ln → sn = tn

One can show:

ν(L0) ⊆ I ν(s0) ̸= ν(t0)

= =

ν(L1) ⊆ I ν(s1) ν(t1)

= =

...
...

...

= =

ν(Ln) ⊆ I ν(sn) ν(tn)

Thus sn ̸= tn.

▶ Informally, each Li+1 is obtained from Li by eliminating a variable
(apply fegd), or by adding an atom (apply ftgd).

▶ There is a substitution µ s.t. µ(L0) ⊆ Ln, µ(s0) = sn, and
µ(t0) = tn. Thus, Ln ̸|= L0 → s0 = t0. Informally, µ combines all
chase steps.

▶ The canonical database Ln will satisfy Σ.
12 / 24

Argumentation why ν(Li+1) ⊆ I

Assume we already established ν(Li) ⊆ I . Assume the chase step:

· · · : Li → si = ti
Apply L→ x = c : Li+1 → si+1 = ti+1

Then, there was a substitution θ for the variables in L such that

▶ θ(L) ⊆ Li , and

▶ Li+1 = (Li)θ(x)→c where θ(x) is a variable (otherwise the chase

would have terminated with E).
From θ(L) ⊆ Li and ν(Li) ⊆ I , it follows ν ◦ θ(L) ⊆ I .
Since I |= L→ x = c , we have ν ◦ θ(x) = c .

Therefore, ν
(
(Li)θ(x)→c

)
= ν(Li)

[
and, by analogous reasoning,
ν(si+1) = ν(si) and ν(ti+1) = ν(ti)

]
.

Thus, ν(Li+1) = ν(Li) ⊆ I .

Exercise: Extend the previous reasoning for an application of L→ x = y
or L→ S(y⃗).

13 / 24

Application of fegd L→ (x = c) on Li
Recall: I |= L→ (x = c).

𝐿𝑖

(𝐿)

𝑦
𝑦

𝑦

𝑦

𝐼

(𝐿𝑖) = (𝐿𝑖+1)

𝑐
𝑐

𝑐

𝑐𝐿𝑖+1

𝑐
𝑐

𝑐

𝑐

𝐿
𝑥

𝑥

 𝑥 = 𝑐

apply 𝐿 on 𝐿𝑖

In this figure, (𝑥) = 𝑦.

14 / 24

Application of ftgd L→ R(t⃗) on Li

𝐿𝑖

(𝐿)

𝐼

𝐿

 𝑅(Ԧ𝑡)

apply 𝐿 on 𝐿𝑖

𝐿𝑖+1

(𝐿)

𝑅(Ԧ𝑡)

(𝐿𝑖)

 ○ (𝐿)

𝑅(○ Ԧ𝑡) belongs
to 𝐼 because

𝐼 ⊨ 𝐿𝑅(𝑡).

15 / 24

Proof: If Σ ̸|= ftgd, the chase ends with a ‘counterexample’
Assume Σ ̸|= L0 → S(y⃗0). There exist (i) a database instance I s.t.
I |= Σ, and (ii) a valuation ν s.t. ν(L0) ⊆ I and S(ν(y⃗0)) ̸∈ I .

Assume the chase sequence is:

L0 → S(y⃗0)
L1 → S(y⃗1)
...

...
Ln → S(y⃗n)

One can show:

ν(L0) ⊆ I S(ν(y⃗0)) ̸∈ I

=

ν(L1) ⊆ I S(ν(y⃗1))

=

...
...

=

ν(Ln) ⊆ I S(ν(y⃗n))

Thus S(y⃗n) ̸∈ Ln.
†

▶ There is a substitution µ s.t. µ(L0) ⊆ Ln and S(µ(y⃗0)) = S(y⃗n).
Thus, Ln ̸|= L0 → S(y⃗0). Informally, µ combines all chase steps.

▶ The canonical database Ln will satisfy Σ.

†S(y⃗n) ∈ Ln would imply S(ν(y⃗n)) ∈ ν(Ln) ⊆ I , a contradiction.

16 / 24

Discussion I

▶ The database Ln constructed by our proof is thus a
counterexample for Σ |= σ, i.e., Ln |= Σ and Ln ̸|= σ (when
distinct variables in Ln are treated as distinct constants).

▶ The proof shows that Ln is homomorphic to I (i.e., there exists
a valuation ν that maps every tuple of Ln to a tuple of I).

▶ Notice that the proof goes through for every database I such
that I |= Σ and I ̸|= σ.

▶ Thus, our counterexample is very special: it is homomorphic
to every database I that satisfies Σ and falsifies σ. Informally,
the counterexample constructed in the proof is the most
general possible.

17 / 24

Discussion II

At some point in the chase, more than one full dependency may be
applicable. If this happens, we choose—in a non-deterministic
way—an applicable full dependency and apply it. Does the
outcome of the chase depend on the order in which full
dependencies are applied?

▶ Assume two distinct chase sequences such that one chase
sequence terminates with a counterexample Ln for Σ |= σ,
thus Σ ̸|= σ.

▶ Then, by what we proved before, the other chase sequence
will necessarily also find some counterexample, say L′.

▶ Then, Ln will be homomorphic to L′, and L′ will be
homomorphic to Ln.

18 / 24

A Note on Non-Full Tuple Generating Dependencies

σ1 : R(u, v)→ R(v , u)

σ2 : R(x , y)→ ∃z (S(y , z))
σ3 : S(x , y)→ ∃z (R(y , z))

Does {σ2, σ3} logically imply σ1?

The chase of {R(u, v)} with σ2 and σ3 yields

{R(u, v),S(v , z1),R(z1, z2),S(z2, z3),R(z3, z4), S(z4, z5), . . .}.

But a counterexample for {σ2, σ3} |= σ1 must be finite.

19 / 24

Optimization of Conjunctive Queries

Consider the (minimal) conjunctive query

q : Answer(u, v ,w)← R(u, v),R(u,w),T (v ,w).

Assume that this query is executed on databases satisfying the
following fegd:

σ : R(x , y) ∧ R(x , z)→ y = z .

The following query is obtained by a chase of q with {σ}:

q′ : Answer(u, v , v)← R(u, v),T (v , v)

Explain: For each database I satisfying σ, we have q(I) = q′(I).

(See the course notes for a more involved example.)

20 / 24

Exercise

Show that {A→ C ,B → C ,C → D,DE → C ,CE → A} logically
implies ⋊⋉ [AD,AB,BE ,CDE ,AE], where the set of attributes is
ABCDE .

(See the course notes for more exercises.)

21 / 24

Epilogue for Students of Logique mathématique I
Most theorems (compactness theorem, completeness theorem,
Löwenheim-Skolem theorem) from classical model theory fail in the
finite case. See also [Lib04].

Theorem (Compactness)

A theory T is consistent iff every finite subset of T is consistent.

Theorem
Compactness fails over finite models: there is a theory T such that

1. T has no finite models, and

2. every finite subset of T has a finite model.

Proof.
Let R be a unary relation name. Let T = {|R| ≥ 0, |R| ≥ 1,
|R| ≥ 2, . . . }, where |R| ≥ n is the sentence

∃x1 · · · ∃xn
(∧

1≤i≤n R(xi) ∧
∧

1≤i<j≤n xi ̸= xj

)
.

22 / 24

A Glimpse of Knowledge Representation and Reasoning

A subfield of Artificial Intelligence.

Beyond Datalog Can the vertices of a graph (V ,E) be colored
with three colors such that no two adjacent vertices
have the same color?

C (x , blue) ∨ C (x , red) ∨ C (x , green)← V (x)

FALSE← E (x , y), x ̸= y ,C (x , z),C (y , z)

Description Logics Sublanguages of first-order logic with “good”
properties (e.g., decidability of logical implication),
used in practical applications like the Semantic Web.

More to come. . .

23 / 24

References

Leonid Libkin.

Elements of Finite Model Theory.
Texts in Theoretical Computer Science. An EATCS Series. Springer, 2004.

24 / 24

