Logical Implication for Full Dependencies

Jef Wijsen

April 28, 2023

Full Dependencies

Full dependencies are closed formulas of the following form:
equality generating (fegd)

$$
\forall \vec{x}(\overbrace{R_{1}\left(\vec{x}_{1}\right) \wedge \cdots \wedge R_{\ell}\left(\vec{x}_{\ell}\right)}^{\text {premise }} \rightarrow s=t)
$$

where each of s, t is either a variable that also occurs in the premise or a constant.
tuple generating (ftgd)

$$
\forall \vec{x}\left(R_{1}\left(\vec{x}_{1}\right) \wedge \cdots \wedge R_{\ell}\left(\vec{x}_{\ell}\right) \rightarrow S(\vec{y})\right)
$$

where each variable that occurs in \vec{y} also occurs in the premise.

Note: The quantifier block $\forall \vec{x}$ will be omitted.

Example

- Functional dependencies are fegds. Multivalued and join dependencies are ftgds.

P	SS\#	Name	Birth	Nat	N	Nat
	123	Smith	1964	USA		USA
	456	Jones	1970	GB		GB
				NL		

$$
\begin{aligned}
P\left(x, y_{1}, z_{1}, w_{1}\right), P\left(x, y_{2}, z_{2}, w_{2}\right) & \rightarrow y_{1}=y_{2} \\
P\left(x, y_{1}, z_{1}, w_{1}\right), P\left(x, y_{2}, z_{2}, w_{2}\right) & \rightarrow z_{1}=z_{2} \\
P\left(x, y_{1}, z_{1}, w_{1}\right), P\left(x, y_{2}, z_{2}, w_{2}\right) & \rightarrow w_{1}=w_{2} \\
P(x, y, z, w) & \rightarrow N(w) \\
P(x, y, z, \text { Europe }) & \rightarrow 0=1
\end{aligned}
$$

Logical Implication

Abstract

Definition (Logical implication) Let Σ be a finite set of full dependencies, and let σ be a full dependency. We say that Σ logically implies σ, denoted $\Sigma \models \sigma$, if every database instance that satisfies all dependencies of Σ also satisfies σ.

Question: Is there an algorithm that takes as input some Σ and σ, and returns "yes" if $\Sigma \models \sigma$, and "no" otherwise?

Explain why the definition of \models cannot be used as an algorithm.

The Chase Algorithm

Question: Does Σ logically imply
some fegd $R_{1}\left(\vec{x}_{1}\right) \wedge \cdots \wedge R_{\ell}\left(\vec{x}_{\ell}\right) \rightarrow s=t$
or some ftgd $R_{1}\left(\vec{x}_{1}\right) \wedge \cdots \wedge R_{\ell}\left(\vec{x}_{\ell}\right) \rightarrow S(\vec{y})$?
Algorithm (sketch)

1. Start with $\overbrace{\left\{R_{1}\left(\vec{x}_{1}\right), \ldots, R_{\ell}\left(\vec{x}_{\ell}\right)\right\}}^{\text {canonical database }} \rightarrow$ right-hand side.
2. Minimally modify this canonical database in order to satisfy all dependencies in Σ :

- an fegd of Σ may force you to make two variables equal (by a substitution), or to make a variable equal to a constant (by a valuation). Always make the same changes to the right-hand side (i.e., to $s=t$ or $S(\vec{y})$);
- an ftgd of Σ may force you to add a fact to the canonical database.

3. Return "yes, because there is no counterexample" as soon as you are forced to make two distinct constants equal (denoted by $\boldsymbol{\xi}$). If you do not end with ξ but your final dependency is trivial, also return "yes, because there is no counterexample"; otherwise return "no, because I found a counterexample".

Example

$$
\begin{aligned}
& \sigma_{1}: \operatorname{Knows}(x, y), \operatorname{Knows}(y, z) \rightarrow A(x, z) \\
& \sigma_{2}: \operatorname{Knows}(x, u), \operatorname{Knows}(v, z) \rightarrow A(x, z)
\end{aligned}
$$

Does $\left\{\sigma_{2}\right\}$ logically imply σ_{1} ?
Here is a chase of σ_{1} by $\left\{\sigma_{2}\right\}$:

$$
\sigma_{1}: \operatorname{Knows}(x, y), \operatorname{Knows}(y, z) \rightarrow A(x, z)
$$

Apply $\sigma_{2}: \operatorname{Knows}(x, y), K n o w s(y, z), A(x, z) \rightarrow A(x, z)$
Apply $\sigma_{2}: \operatorname{Knows}(x, y), \operatorname{Knows}(y, z), A(x, z), A(y, y) \rightarrow A(x, z)$
Since the last ftgd is trivial, return "yes, it is the case that $\left\{\sigma_{2}\right\} \models \sigma_{1}$."

Example

$$
\begin{aligned}
& \sigma_{1}: \operatorname{Knows}(x, y), \operatorname{Knows}(y, z) \rightarrow A(x, z) \\
& \sigma_{2}: \operatorname{Knows}(x, u), \operatorname{Knows}(v, z) \rightarrow A(x, z)
\end{aligned}
$$

Does $\left\{\sigma_{1}\right\}$ logically imply σ_{2} ?
Here is a chase of σ_{2} by $\left\{\sigma_{1}\right\}$:

$$
\sigma_{2}: \operatorname{Knows}(x, u), \operatorname{Knows}(v, z) \rightarrow A(x, z)
$$

Since σ_{1} is not applicable, the chase immediately terminates.
The canonical database $\{\operatorname{Knows}(x, u)$, $\operatorname{Knows}(v, z)\}$ satisfies $\left\{\sigma_{1}\right\}$ and falsifies σ_{2}, hence $\left\{\sigma_{1}\right\} \not \vDash \sigma_{2}$.

Example

Does $\{\bowtie[A C, A B D], B \rightarrow C\}$ logically imply $A \rightarrow C$? Let

$$
\begin{aligned}
& \sigma_{1}: R\left(x, y^{\prime}, z, w^{\prime}\right), R\left(x, y, z^{\prime}, w\right) \rightarrow R(x, y, z, w) \\
& \sigma_{2}: R\left(x_{1}, y, z_{1}, w_{1}\right), R\left(x_{2}, y, z_{2}, w_{2}\right) \rightarrow z_{1}=z_{2} \\
& \sigma_{3}:
\end{aligned}
$$

Obviously, $\sigma_{1} \equiv \bowtie[A C, A B D], \sigma_{2} \equiv B \rightarrow C$, and $\sigma_{3} \equiv A \rightarrow C$.
Here is a chase of σ_{3} by $\left\{\sigma_{1}, \sigma_{2}\right\}$:

$$
\sigma_{3}: R\left(x, y_{1}, z_{1}, w_{1}\right), R\left(x, y_{2}, z_{2}, w_{2}\right) \rightarrow z_{1}=z_{2}
$$

Apply $\sigma_{1}: R\left(x, y_{1}, z_{1}, w_{1}\right), R\left(x, y_{2}, z_{2}, w_{2}\right), R\left(x, y_{2}, z_{1}, w_{2}\right) \rightarrow z_{1}=z_{2}$ Apply $\sigma_{2}: R\left(x, y_{1}, z_{1}, w_{1}\right), R\left(x, y_{2}, z_{1}, w_{2}\right) \rightarrow z_{1}=z_{1}$

Since the last fegd is trivial, return "yes, it is the case that $\left\{\sigma_{1}, \sigma_{2}\right\} \mid=\sigma_{3}$."

Example

Does $\{R(x) \rightarrow x=a, R(x) \rightarrow x=b\}$ logically imply $R(v) \rightarrow S(v)$?

A chase of $R(v) \rightarrow S(v)$ by $\{R(x) \rightarrow x=a, R(x) \rightarrow x=b\}:$
Initial fegd : $R(v) \rightarrow S(v)$
Apply $R(x) \rightarrow x=a \quad: \quad R(a) \rightarrow S(a)$
Apply $R(x) \rightarrow x=b: a=b Z$
Since we are forced to make a and b equal, return "yes, it is the case that $\{R(x) \rightarrow x=a, R(x) \rightarrow x=b\} \models R(v) \rightarrow S(v)$."

Example

Let

$$
\begin{aligned}
\sigma_{1} & : R(x, y) \rightarrow R(y, x) \\
\sigma_{2} & : R(x, y), S(y, z), R(z, u), S(u, x) \rightarrow y=u \\
\sigma_{3} & : R(x, y), S(y, z), R(z, u), S(u, x) \rightarrow S(x, u)
\end{aligned}
$$

Does $\left\{\sigma_{1}, \sigma_{2}\right\}$ logically imply σ_{3} ?
A chase of σ_{3} by $\left\{\sigma_{1}, \sigma_{2}\right\}$:

$$
\sigma_{3}: R(x, y), S(y, z), R(z, u), S(u, x) \rightarrow S(x, u)
$$

Apply $\sigma_{2}: \quad R(x, u), S(u, z), R(z, u), S(u, x) \rightarrow S(x, u)$
Apply $\sigma_{1}: \quad R(x, u), R(u, x), S(u, z), R(z, u), S(u, x) \rightarrow S(x, u)$
Apply $\sigma_{1}: R(x, u), R(u, x), S(u, z), R(z, u), R(u, z), S(u, x) \rightarrow S(x, u)$
The canonical database $\{R(x, u), R(u, x), S(u, z), R(z, u)$, $R(u, z), S(u, x)\}$ satisfies $\left\{\sigma_{1}, \sigma_{2}\right\}$ and falsifies σ_{3}, hence $\left\{\sigma_{1}, \sigma_{2}\right\} \not \vDash \sigma_{3}$.

Chase finds a most general counterexample (if it exists) Assume $R[A B C D E]$. We have $\{A \rightarrow B, B \rightarrow C\} \not \vDash A \rightarrow D$, as witnessed by

$$
I=\begin{array}{l|ccccc}
R & A & B & C & D & E \\
\cline { 2 - 6 } & a & b & c & d_{1} & e \\
a & b & c & d_{2} & e
\end{array}
$$

Start at $A \rightarrow D: R\left(u, v_{1}, w_{1}, x_{1}, y_{1}\right), R\left(u, v_{2}, w_{2}, x_{2}, y_{2}\right) \rightarrow x_{1}=x_{2}$
There is a valuation ν mapping $R\left(u, v_{1}, w_{1}, x_{1}, y_{1}\right)$ to $R\left(a, b, c, d_{1}, e\right)$, and $R\left(u, v_{2}, w_{2}, x_{2}, y_{2}\right)$ to $R\left(a, b, c, d_{2}, e\right)$.

Apply $A \rightarrow B$: We apply $\left\{v_{2} \mapsto v_{1}\right\}$ giving

$$
R\left(u, v_{1}, w_{1}, x_{1}, y_{1}\right), R\left(u, v_{1}, w_{2}, x_{2}, y_{2}\right) \rightarrow x_{1}=x_{2}
$$

Apply $B \rightarrow C$: We apply $\left\{w_{2} \mapsto w_{1}\right\}$ giving

$$
\underbrace{R\left(u, v_{1}, w_{1}, x_{1}, y_{1}\right), R\left(u, v_{1}, w_{1}, x_{2}, y_{2}\right)}_{J} \rightarrow x_{1}=x_{2}
$$

The substitution $\mu:=\left\{v_{2} \mapsto v_{1}, w_{2} \mapsto w_{1}\right\}$ maps the "body" of $A \rightarrow D$ to J, while $\mu\left(x_{1}\right)=x_{1}$ and $\mu\left(x_{2}\right)=x_{2}$. Thus, J is a "counterexample"! $\nu=\left\{u \mapsto a, v_{1} \mapsto b, w_{1} \mapsto c, x_{1} \mapsto d_{1}, y_{1} \mapsto e, x_{2} \mapsto d_{2}, y_{2} \mapsto e, \ldots\right\}$ is a homomorphism from J to I. Note that y_{1} and y_{2} are both mapped to e.

Proof: If $\Sigma \not \vDash$ fegd, the chase ends with a 'counterexample'

 Assume $\Sigma \not \vDash L_{0} \rightarrow s_{0}=t_{0}$. There exist (i) a database instance I s.t. $I \vDash \Sigma$, and (ii) a valuation ν s.t. $\nu\left(L_{0}\right) \subseteq I$ and $\nu\left(s_{0}\right) \neq \nu\left(t_{0}\right)$.One can show:

Assume the chase sequence is:

$$
\begin{array}{ccc}
L_{0} & \rightarrow & s_{0}=t_{0} \\
L_{1} & \rightarrow & s_{1}=t_{1} \\
\vdots & & \vdots \\
L_{n} & \rightarrow & s_{n}=t_{n}
\end{array}
$$

$\nu\left(L_{0}\right) \subseteq I$	$\nu\left(s_{0}\right)$	\neq	$\nu\left(t_{0}\right)$		
	$\\|$	$\\|$			
$\nu\left(L_{1}\right) \subseteq I$	$\nu\left(s_{1}\right)$	$\nu\left(t_{1}\right)$			
	$\\|$	$\\|$			
\vdots	\vdots	\vdots			
	$\\|$	$\\|$			
$\nu\left(L_{n}\right) \subseteq I$	$\nu\left(s_{n}\right)$	$\nu\left(t_{n}\right)$			

Thus $s_{n} \neq t_{n}$.

- Informally, each L_{i+1} is obtained from L_{i} by eliminating a variable (apply fegd), or by adding an atom (apply ftgd).
- There is a substitution μ s.t. $\mu\left(L_{0}\right) \subseteq L_{n}, \mu\left(s_{0}\right)=s_{n}$, and $\mu\left(t_{0}\right)=t_{n}$. Thus, $L_{n} \not \vDash L_{0} \rightarrow s_{0}=t_{0}$. Informally, μ combines all chase steps.
- The canonical database L_{n} will satisfy Σ.

Argumentation why $\nu\left(L_{i+1}\right) \subseteq I$

Assume we already established $\nu\left(L_{i}\right) \subseteq I$. Assume the chase step:

$$
\begin{array}{cll}
& \cdots & : \\
\text { Apply } L \rightarrow x=c & L_{i} \rightarrow s_{i}=t_{i} \\
& : & L_{i+1} \rightarrow s_{i+1}=t_{i+1}
\end{array}
$$

Then, there was a substitution θ for the variables in L such that

- $\theta(L) \subseteq L_{i}$, and
- $L_{i+1}=\left(L_{i}\right)_{\theta(x) \rightarrow c}$ where $\theta(x)$ is a variable (otherwise the chase would have terminated with $\bar{\Sigma})$.

From $\theta(L) \subseteq L_{i}$ and $\nu\left(L_{i}\right) \subseteq I$, it follows $\nu \circ \theta(L) \subseteq I$.
Since $I \models L \rightarrow x=c$, we have $\nu \circ \theta(x)=c$.
Therefore, $\nu\left(\left(L_{i}\right)_{\theta(x) \rightarrow c}\right)=\nu\left(L_{i}\right)\left[\begin{array}{ll}\text { and, } & \text { by } \\ \nu\left(s_{i+1}\right) & \text { analogous } \\ =\nu\left(s_{i}\right) \text { and } \nu\left(t_{i+1}\right)=\nu\left(t_{i}\right)\end{array}\right]$.
Thus, $\nu\left(L_{i+1}\right)=\nu\left(L_{i}\right) \subseteq 1$.
Exercise: Extend the previous reasoning for an application of $L \rightarrow x=y$ or $L \rightarrow S(\vec{y})$.

Application of fegd $L \rightarrow(x=c)$ on L_{i}

Recall: $I \vDash L \rightarrow(x=c)$.

Application of ftgd $L \rightarrow R(\vec{t})$ on L_{i}

Proof: If $\Sigma \not \vDash f \mathrm{ftgd}$, the chase ends with a 'counterexample'

 Assume $\Sigma \not \vDash L_{0} \rightarrow S\left(\vec{y}_{0}\right)$. There exist (i) a database instance I s.t. $I \models \Sigma$, and (ii) a valuation ν s.t. $\nu\left(L_{0}\right) \subseteq I$ and $S\left(\nu\left(\vec{y}_{0}\right)\right) \notin I$.One can show:

Assume the chase sequence is:

$$
\begin{array}{c|cc}
\nu\left(L_{0}\right) \subseteq I & S\left(\nu\left(\vec{y}_{0}\right)\right) & \notin I \\
\nu\left(L_{1}\right) \subseteq I & S\left(\nu\left(\vec{y}_{1}\right)\right) & \\
\vdots & \vdots \\
& \vdots \\
\nu\left(L_{n}\right) \subseteq I & S\left(\nu\left(\vec{y}_{n}\right)\right)
\end{array}
$$

Thus $S\left(\vec{y}_{n}\right) \notin L_{n} .{ }^{\dagger}$

- There is a substitution μ s.t. $\mu\left(L_{0}\right) \subseteq L_{n}$ and $S\left(\mu\left(\vec{y}_{0}\right)\right)=S\left(\vec{y}_{n}\right)$. Thus, $L_{n} \notin L_{0} \rightarrow S\left(\vec{y}_{0}\right)$. Informally, μ combines all chase steps.
- The canonical database L_{n} will satisfy Σ.

[^0]
Discussion I

- The database L_{n} constructed by our proof is thus a counterexample for $\Sigma \models \sigma$, i.e., $L_{n} \models \Sigma$ and $L_{n} \not \models \sigma$ (when distinct variables in L_{n} are treated as distinct constants).
- The proof shows that L_{n} is homomorphic to I (i.e., there exists a valuation ν that maps every tuple of L_{n} to a tuple of I).
- Notice that the proof goes through for every database I such that $I \models \Sigma$ and $I \not \vDash \sigma$.
- Thus, our counterexample is very special: it is homomorphic to every database I that satisfies Σ and falsifies σ. Informally, the counterexample constructed in the proof is the most general possible.

Discussion II

At some point in the chase, more than one full dependency may be applicable. If this happens, we choose-in a non-deterministic way-an applicable full dependency and apply it. Does the outcome of the chase depend on the order in which full dependencies are applied?

- Assume two distinct chase sequences such that one chase sequence terminates with a counterexample L_{n} for $\Sigma \models \sigma$, thus $\Sigma \not \models \sigma$.
- Then, by what we proved before, the other chase sequence will necessarily also find some counterexample, say L^{\prime}.
- Then, L_{n} will be homomorphic to L^{\prime}, and L^{\prime} will be homomorphic to L_{n}.

A Note on Non-Full Tuple Generating Dependencies

$$
\begin{aligned}
& \sigma_{1}: \quad R(u, v) \rightarrow R(v, u) \\
& \sigma_{2}: \quad R(x, y) \rightarrow \exists z(S(y, z)) \\
& \sigma_{3}: S(x, y) \rightarrow \exists z(R(y, z))
\end{aligned}
$$

Does $\left\{\sigma_{2}, \sigma_{3}\right\}$ logically imply σ_{1} ?

The chase of $\{R(u, v)\}$ with σ_{2} and σ_{3} yields

$$
\left\{R(u, v), S\left(v, z_{1}\right), R\left(z_{1}, z_{2}\right), S\left(z_{2}, z_{3}\right), R\left(z_{3}, z_{4}\right), S\left(z_{4}, z_{5}\right), \ldots\right\}
$$

But a counterexample for $\left\{\sigma_{2}, \sigma_{3}\right\} \models \sigma_{1}$ must be finite.

Optimization of Conjunctive Queries

Consider the (minimal) conjunctive query

$$
q: A n s w e r(u, v, w) \leftarrow R(u, v), R(u, w), T(v, w) .
$$

Assume that this query is executed on databases satisfying the following fegd:

$$
\sigma: R(x, y) \wedge R(x, z) \rightarrow y=z
$$

The following query is obtained by a chase of q with $\{\sigma\}$:

$$
q^{\prime}: \operatorname{Answer}(u, v, v) \leftarrow R(u, v), T(v, v)
$$

Explain: For each database I satisfying σ, we have $q(I)=q^{\prime}(I)$.
(See the course notes for a more involved example.)

Exercise

Show that $\{A \rightarrow C, B \rightarrow C, C \rightarrow D, D E \rightarrow C, C E \rightarrow A\}$ logically implies $\triangle[A D, A B, B E, C D E, A E]$, where the set of attributes is $A B C D E$.
(See the course notes for more exercises.)

Epilogue for Students of Logique mathématique I

Most theorems (compactness theorem, completeness theorem, Löwenheim-Skolem theorem) from classical model theory fail in the finite case. See also [Lib04].
Theorem (Compactness)
A theory T is consistent iff every finite subset of T is consistent.
Theorem
Compactness fails over finite models: there is a theory T such that

1. T has no finite models, and
2. every finite subset of T has a finite model.

Proof.
Let R be a unary relation name. Let $T=\{|R| \geq 0,|R| \geq 1$, $|R| \geq 2, \ldots\}$, where $|R| \geq n$ is the sentence

$$
\exists x_{1} \cdots \exists x_{n}\left(\bigwedge_{1 \leq i \leq n} R\left(x_{i}\right) \wedge \bigwedge_{1 \leq i<j \leq n} x_{i} \neq x_{j}\right)
$$

A Glimpse of Knowledge Representation and Reasoning

A subfield of Artificial Intelligence.
Beyond Datalog Can the vertices of a graph (V, E) be colored with three colors such that no two adjacent vertices have the same color?

$$
\begin{aligned}
& C(x, \text { blue }) \vee C(x, \text { red }) \vee C(x, \text { green }) \leftarrow V(x) \\
& \text { FALSE } \leftarrow E(x, y), x \neq y, C(x, z), C(y, z)
\end{aligned}
$$

Description Logics Sublanguages of first-order logic with "good" properties (e.g., decidability of logical implication), used in practical applications like the Semantic Web.
More to come. .

References

Leonid Libkin.Elements of Finite Model Theory.
Texts in Theoretical Computer Science. An EATCS Series. Springer, 2004.

[^0]: ${ }^{\dagger} S\left(\vec{y}_{n}\right) \in L_{n}$ would imply $S\left(\nu\left(\overrightarrow{y_{n}}\right)\right) \in \nu\left(L_{n}\right) \subseteq I$, a contradiction.

