Adding Recursion to SPJRUD

Jef Wijsen

May 10, 2019

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Complexity

- ► An algorithm runs in O(f(n)) time if there exists a constant k such that on inputs of sufficiently large size n, the algorithm terminates after at most k · f(n) steps.
- An algorithm runs in O(f(n)) space if there exists a constant k such that on inputs of sufficiently large size n, the algorithm uses at most k · f(n) bits of auxiliary memory.
- A polytime algorithm runs in $\mathcal{O}(n^k)$ time for some constant k.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- A logspace algorithm runs in $\mathcal{O}(\log n)$ space.
- ► Explain $\mathbf{L} \subseteq \mathbf{P}$: with $k \cdot \log n$ bits, you can use at most $2^{k \cdot \log n} = n^k$ distinct auxiliary states.

Query Evaluation

For every fixed SPJRUD expression E, we define EVAL(E) as the following problem:

INPUT: A database \mathcal{I} and a tuple t.

QUESTION: Does t belong to $\llbracket E \rrbracket^{\mathcal{I}}$?

Proposition

For every expression E in SPJRUD, there exists a logspace algorithm for the following problem:

Given a database \mathcal{I} , return $\llbracket E \rrbracket^{\mathcal{I}}$.

 \implies EVAL(*E*) is in **L** for every expression *E* in SPJRUD.

Fixed Points

Let U be a finite set. A mapping $f : \mathcal{P}(U) \to \mathcal{P}(U)$ is

- Inflationary (French: inflationniste) if for all X ⊆ U, X ⊆ f(X);
- monotone if for all $X, Y \subseteq U, X \subseteq Y$ implies $f(X) \subseteq f(Y)$.

A set $X \subseteq U$ is a fixed point of f if f(X) = X.

Example

Let $U = \{a, b\}$ and f_1 , f_2 , f_3 as follows.

X	$f_1(X)$	$f_2(X)$	$f_3(X)$
Ø	$\{a,b\}$	Ø	$\{a,b\}$
{a}	{a}	{ <i>b</i> }	{ <i>b</i> }
{ <i>b</i> }	{ <i>b</i> }	{a}	{a}
$\{a,b\}$	$\{a,b\}$	$\{a,b\}$	Ø

Fixed Point Computation

Property

Define $X^0 := \emptyset$, and for $i = 0, 1, \dots, X^{i+1} := f(X^i)$.

- If f is inflationary or f is monotone, then for some n ≤ |U|, Xⁿ is a fixed point.
- Moreover, if f is monotone, then this fixed point Xⁿ is included in every other fixed point of f. That is, Xⁿ is the unique least fixed point of f.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

A Fixed Point Operator for SPJRUD

Let R and Δ be relation names s.t. sort(R) = sort(Δ) = {A, B}. Let

$$\mathsf{E} \coloneqq \mathsf{R} \cup \pi_{\mathsf{A}\mathsf{B}}\left(\rho_{\mathsf{B}\mapsto\mathsf{C}}\left(\mathsf{R}\right) \bowtie \rho_{\mathsf{A}\mapsto\mathsf{C}}\left(\Delta\right)\right).$$

Define f as the mapping s.t. for every relation X over $\{A, B\}$,

$$f(X) := \llbracket E \rrbracket^{\mathcal{I}_{\Delta \to X}}$$

Define $\Delta^0 := \emptyset$ and $\Delta^{i+1} := f(\Delta^i)$ for $i \ge 0$.

Questions

- Argue that f is both inflationary and monotone.
- Describe the fixed point reached by $(\Delta^i)_{i=0}^{\infty}$.

 \implies New operator:

Syntax: $\mathbf{fp}_{\Delta:AB}(E)$

Semantics: $\llbracket \mathbf{fp}_{\Delta:AB}(E) \rrbracket^{\mathcal{I}}$ is the fixed point reached by $(\Delta^i)_{i=0}^{\infty}$.

Nesting is Allowed

Example

Let sort(R) = {A, B, C}.

$$E_{1} := \mathbf{fp}_{\Delta:ABC} \left(R \cup \pi_{ABC} \left(\rho_{B \mapsto D} \left(R \right) \bowtie \rho_{A \mapsto D} \left(\Delta \right) \right) \right)$$

$$E_{2} := \pi_{AB} \left(E_{1} \right)$$

$$E_{3} := \mathbf{fp}_{\Delta':AB} \left(E_{2} \cup \pi_{AB} \left(\rho_{B \mapsto C} \left(E_{2} \right) \bowtie \rho_{A \mapsto C} \left(\Delta' \right) \right) \right)$$

Example

Let sort(R) = {A}.

$$\mathbf{fp}_{\Delta:A}\left(\Delta\cup\left(R-\mathbf{fp}_{\Delta':A}\left(\Delta'\cup(R-\Delta)
ight)
ight)
ight)$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Problem: $(\Delta^i)_{i=0}^{\infty}$ May Reach No Fixed Point Let sort(R) = sort(Δ). Let

$$f(X) \coloneqq \llbracket R - \Delta \rrbracket^{\mathcal{I}_{\Delta \to X}}$$

Questions

- Does f have a fixed point for every database I?
- Does f have a fixed point for some database I?
- What if we replace R with an arbitrary SPJRUD expression of the same sort as Δ?

Proposition

The following problem is undecidable: Given an expression E that uses Δ , does Δ^0 , Δ^1 , Δ^2 ,... (as previously defined) reach a fixed point for every database \mathcal{I} ?

Solution

Alike in Bases de Données I:

domain independence is an undecidable semantic property ightarrow safety is a decidable syntactic property

Proposition

Let $\mathbf{fp}_{\Delta:S}(E)$ be syntactically well-defined. Let \mathcal{I} be any database, and $f(X) := \llbracket E \rrbracket^{\mathcal{I}_{\Delta \to X}}$. Then,

if all **fp**-subexpressions¹ are of the form $\mathbf{fp}_{\Delta':S'}(\Delta' \cup E')$

 \implies f is inflationary

and

if for every **fp**-subexpression $\mathbf{fp}_{\Delta':S'}(E')$, we have that E' is \implies f is monotone positive in Δ'

¹Since an expression is a subexpression of itself, these conditions apply also to $\mathbf{fp}_{\Delta:S}(E)$ itself.

SPJRUD+FP

SPJRUD+FP extends SPJRUD with the **fp**-operator, but with the following syntactic restriction:

whenever you write $\mathbf{fp}_{\Delta:S}(E)$, it must be the case that either

- *E* is of the form $\Delta \cup E'$, or
- E is positive in Δ.

Moreover, avoid mixing up both forms in a same expression (because in database theory, it is common to separate **ifp** from **lfp**, which correspond, respectively, to the first and second syntactic form).

Proposition

For every expression E in SPJRUD+FP, there exists a polytime algorithm for the following problem:

Given a database \mathcal{I} , return $\llbracket E \rrbracket^{\mathcal{I}}$.

 \implies EVAL(E) is in **P** for every expression E in SPJRUD+FP.

Fixed Point Operator in Relational Calculus

Syntax We add formulas of the form

$$[\mathbf{fp}_{\Delta:x_1,\ldots,x_k}(\varphi)](t_1,\ldots,t_k)$$

where

• Δ is a *k*-ary relation name;

► $x_1, ..., x_k$ are the free variables of φ ; and \implies evaluating $\varphi(x_1, ..., x_k)$ on some database $\mathcal{I}_{\Delta \to \Delta^i}$ results in a *k*-ary relation $\Delta^{i+1} := \{(c_1, ..., c_k) \mid \mathcal{I}_{\Delta \to \Delta^i} \models \varphi(c_1, ..., c_k)\}$

• every t_i is a constant or a variable. The free variables of $[\mathbf{fp}_{\Delta:x_1,...,x_k}(\varphi)](t_1,...,t_k)$ are the variables that occur in $t_1,...,t_k$.

Semantics return all values for [the variables in] (t_1, \ldots, t_k) that yield a tuple in the fixed point reached by $(\Delta^i)_{i=0}^{\infty}$ with $\Delta^0 = \emptyset$

Examples

► Transitive closure of a binary relation *R*.

 $\{\langle u,v\rangle \mid [\mathbf{fp}_{\Delta:x,y}(R(x,y) \lor \exists z (R(x,z) \land \Delta(z,y)))](u,v)\}$

 \implies all couples (u, v) in the transitive closure

► All nodes reachable from 0.

 $\{\langle v \rangle \mid [\mathbf{fp}_{\Delta:x,y}(R(x,y) \lor \exists z (R(x,z) \land \Delta(z,y)))](0,v)\}$

Is there a path from 0 to 4?

 $\{\langle\rangle \mid [\mathbf{fp}_{\Delta:x,y}(R(x,y) \lor \exists z (R(x,z) \land \Delta(z,y)))](0,4)\}$

All couples not in the transitive closure.

$$\{ \langle u, v \rangle \mid \exists w \left(R(u, w) \lor R(w, u) \right) \land \exists w \left(R(v, w) \lor R(w, v) \right) \land \\ \neg [\mathbf{fp}_{\Delta:x,y} \left(R(x, y) \lor \exists z \left(R(x, z) \land \Delta(z, y) \right) \right)](u, v) \}$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Example

Let *R* be ternary relation name with sort(*R*) = {*A*, *B*, *C*}. Let *S* be a unary relation name with sort(*S*) = {*A*}. An *R*-tuple {*A* : *p*, *B* : *q*, *C* : *r*} encodes the propositional formula

$$p \wedge q \rightarrow r$$
.

An S-tuple $\{A : p\}$ encodes that p has truth value **true**.

Which propositions r must be true in every model of the formulas in R, given the truth values in S?

 $\{r \mid [\mathbf{fp}_{\Delta:x}(S(x) \lor \exists p \exists q (R(p,q,x) \land \Delta(p) \land \Delta(q)))](r)\}$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Syntactic Restrictions

$$[\mathbf{fp}_{\Delta:x_1,\ldots,x_k}(\varphi)](t_1,\ldots,t_k)$$

Question:

What syntactic restrictions on φ guarantee that

$$\emptyset = \Delta^0, \Delta^1, \Delta^2, \dots$$

will reach a fixed point?

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Exercise

Let R be a binary relation that encodes a directed graph. Which vertices are in the answer of the following query?

$$\{ z \mid [\mathbf{fp}_{\Delta:x} (\exists y (R(x, y) \lor R(y, x)) \land \forall y (R(y, x) \to \Delta(y)))](z) \\ \land \\ \exists x R(x, z) \}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Transitive Closure Logic

SPJRUD+TC adds a further restriction:

whenever you write $\mathbf{fp}_{\Delta:S}(E)$, it must be the case that sort $(E) = \vec{A}\vec{B}\vec{D}$ with $|\vec{A}| = |\vec{B}|$ and E computes, for every fixed \vec{D} -value \vec{d} , the transitive closure of the set of (\vec{A}, \vec{B}) -values that occur with \vec{d} ;

$$\implies \quad \text{if } \{\vec{A} : \vec{a}, \vec{B} : \vec{b}, \vec{D} : \vec{d}\} \text{ and } \{\vec{A} : \vec{b}, \vec{B} : \vec{c}, \vec{D} : \vec{d}\} \text{ are in} \\ \text{the transitive closure, then so is } \{\vec{A} : \vec{a}, \vec{B} : \vec{c}, \vec{D} : \vec{d}\}.$$

Note: separate transitive closure is computed for every value of \vec{D} .

Convenient notation: $tc_{\vec{A}:\vec{B}}(E)$

SPJRUD+TC has a lower complexity than SPJRUD+FP (NL versus \mathbf{P}).

Discussion and Exercises

See course notes.

