Adding Recursion to SPJRUD

Jef Wijsen

May 10, 2019

Complexity

- An algorithm runs in $\mathcal{O}(f(n))$ time if there exists a constant k such that on inputs of sufficiently large size n, the algorithm terminates after at most $k \cdot f(n)$ steps.
- An algorithm runs in $\mathcal{O}(f(n))$ space if there exists a constant k such that on inputs of sufficiently large size n, the algorithm uses at most $k \cdot f(n)$ bits of auxiliary memory.
- A polytime algorithm runs in $\mathcal{O}\left(n^{k}\right)$ time for some constant k.
- A logspace algorithm runs in $\mathcal{O}(\log n)$ space.
- Explain $\mathbf{L} \subseteq \mathbf{P}$: with $k \cdot \log n$ bits, you can use at most $2^{k \cdot \log n}=n^{k}$ distinct auxiliary states.

Query Evaluation

For every fixed SPJRUD expression E, we define $\operatorname{EVAL}(E)$ as the following problem:

INPUT: A database \mathcal{I} and a tuple t.
QUESTION: Does t belong to $\llbracket E \rrbracket^{\mathcal{I}}$?
Proposition
For every expression E in SPJRUD, there exists a logspace algorithm for the following problem:

Given a database \mathcal{I}, return $\llbracket E \rrbracket^{\mathcal{I}}$.
$\Longrightarrow \operatorname{EVAL}(E)$ is in \mathbf{L} for every expression E in SPJRUD.

Fixed Points

Let U be a finite set. A mapping $f: \mathcal{P}(U) \rightarrow \mathcal{P}(U)$ is

- inflationary (French: inflationniste) if for all $X \subseteq U$, $X \subseteq f(X)$;
- monotone if for all $X, Y \subseteq U, X \subseteq Y$ implies $f(X) \subseteq f(Y)$.

A set $X \subseteq U$ is a fixed point of f if $f(X)=X$.

Example

Let $U=\{a, b\}$ and f_{1}, f_{2}, f_{3} as follows.

X	$f_{1}(X)$	$f_{2}(X)$	$f_{3}(X)$
\emptyset	$\{a, b\}$	\emptyset	$\{a, b\}$
$\{a\}$	$\{a\}$	$\{b\}$	$\{b\}$
$\{b\}$	$\{b\}$	$\{a\}$	$\{a\}$
$\{a, b\}$	$\{a, b\}$	$\{a, b\}$	\emptyset

Fixed Point Computation

Property

Define $X^{0}:=\emptyset$, and for $i=0,1, \ldots, X^{i+1}:=f\left(X^{i}\right)$.

- If f is inflationary or f is monotone, then for some $n \leq|U|$, X^{n} is a fixed point.
- Moreover, if f is monotone, then this fixed point X^{n} is included in every other fixed point of f. That is, X^{n} is the unique least fixed point of f.

A Fixed Point Operator for SPJRUD

Let R and Δ be relation names s.t. $\operatorname{sort}(R)=\operatorname{sort}(\Delta)=\{A, B\}$. Let

$$
E:=R \cup \pi_{A B}\left(\rho_{B \mapsto C}(R) \bowtie \rho_{A \mapsto C}(\Delta)\right) .
$$

Define f as the mapping s.t. for every relation X over $\{A, B\}$,

$$
f(X):=\llbracket E \rrbracket^{\mathcal{I}_{\Delta \rightarrow x}}
$$

Define $\Delta^{0}:=\emptyset$ and $\Delta^{i+1}:=f\left(\Delta^{i}\right)$ for $i \geq 0$.

Questions

- Argue that f is both inflationary and monotone.
- Describe the fixed point reached by $\left(\Delta^{i}\right)_{i=0}^{\infty}$.
\Longrightarrow New operator:

Syntax: $\mathbf{f p}_{\Delta: A B}(E)$

Semantics: $\llbracket \mathbf{f p}_{\Delta: A B}(E) \rrbracket^{\mathcal{I}}$ is the fixed point reached by $\left(\Delta^{i}\right)_{i=0}^{\infty}$.

Nesting is Allowed

Example

Let sort $(R)=\{A, B, C\}$.

$$
\begin{aligned}
& E_{1}:=\mathbf{f p}_{\Delta: A B C}\left(R \cup \pi_{A B C}\left(\rho_{B \mapsto D}(R) \bowtie \rho_{A \mapsto D}(\Delta)\right)\right) \\
& E_{2}:=\pi_{A B}\left(E_{1}\right) \\
& E_{3}:=\mathbf{f p}_{\Delta^{\prime}: A B}\left(E_{2} \cup \pi_{A B}\left(\rho_{B \mapsto C}\left(E_{2}\right) \bowtie \rho_{A \mapsto C}\left(\Delta^{\prime}\right)\right)\right)
\end{aligned}
$$

Example
Let $\operatorname{sort}(R)=\{A\}$.

$$
\mathbf{f p}_{\Delta: A}\left(\Delta \cup\left(R-\mathbf{f p}_{\Delta^{\prime}: A}\left(\Delta^{\prime} \cup(R-\Delta)\right)\right)\right)
$$

Problem: $\left(\Delta^{i}\right)_{i=0}^{\infty}$ May Reach No Fixed Point

Let $\operatorname{sort}(R)=\operatorname{sort}(\Delta)$.
Let

$$
f(X):=\llbracket R-\Delta \rrbracket^{\mathcal{I}_{\Delta \rightarrow X}} .
$$

Questions

- Does f have a fixed point for every database \mathcal{I} ?
- Does f have a fixed point for some database \mathcal{I} ?
- What if we replace R with an arbitrary SPJRUD expression of the same sort as Δ ?

$$
\Downarrow
$$

Proposition

The following problem is undecidable: Given an expression E that uses Δ, does $\Delta^{0}, \Delta^{1}, \Delta^{2}, \ldots$ (as previously defined) reach a fixed point for every database \mathcal{I} ?

Solution

Alike in Bases de Données I:
domain independence is an undecidable semantic property \rightarrow safety is a decidable syntactic property

Proposition

Let $\mathbf{f p}_{\Delta: S}(E)$ be syntactically well-defined.
Let \mathcal{I} be any database, and $f(X):=\llbracket E \rrbracket^{\mathcal{I}_{\Delta \rightarrow X}}$.
Then,
if all $\mathbf{f p}$-subexpressions ${ }^{1}$ are of the form $\mathrm{fp}_{\Delta^{\prime}: S^{\prime}}\left(\Delta^{\prime} \cup E^{\prime}\right)$
$\Longrightarrow f$ is inflationary
and
if for every $\mathbf{f p}$-subexpression
$\mathbf{f p}_{\Delta^{\prime}: S^{\prime}}\left(E^{\prime}\right)$, we have that E^{\prime} is $\Longrightarrow f$ is monotone positive in Δ^{\prime}

[^0]
SPJRUD+FP

SPJRUD+FP extends SPJRUD with the fp-operator, but with the following syntactic restriction:
whenever you write $\mathbf{f p}_{\Delta: S}(E)$, it must be the case that either

- E is of the form $\Delta \cup E^{\prime}$, or
- E is positive in Δ.

Moreover, avoid mixing up both forms in a same expression (because in database theory, it is common to separate ifp from Ifp, which correspond, respectively, to the first and second syntactic form).

Proposition

For every expression E in SPJRUD $+F P$, there exists a polytime algorithm for the following problem:

Given a database \mathcal{I}, return $\llbracket E \rrbracket^{\mathcal{I}}$.
$\Longrightarrow \operatorname{EVAL}(E)$ is in \mathbf{P} for every expression E in $S P J R U D+F P$.

Fixed Point Operator in Relational Calculus

Syntax We add formulas of the form

$$
\left[\mathbf{f p}_{\Delta: x_{1}, \ldots, x_{k}}(\varphi)\right]\left(t_{1}, \ldots, t_{k}\right)
$$

where

- Δ is a k-ary relation name;
- x_{1}, \ldots, x_{k} are the free variables of φ; and
\Longrightarrow evaluating $\varphi\left(x_{1}, \ldots, x_{k}\right)$ on some database $\mathcal{I}_{\Delta \rightarrow \Delta^{i}}$ results in a k-ary relation $\Delta^{i+1}:=\left\{\left(c_{1}, \ldots, c_{k}\right) \mid \mathcal{I}_{\Delta \rightarrow \Delta^{i}} \models \varphi\left(c_{1}, \ldots, c_{k}\right)\right\}$
- every t_{i} is a constant or a variable.

The free variables of $\left[\mathbf{f p}_{\Delta: x_{1}, \ldots, x_{k}}(\varphi)\right]\left(t_{1}, \ldots, t_{k}\right)$ are the variables that occur in t_{1}, \ldots, t_{k}.

Semantics return all values for [the variables in] $\left(t_{1}, \ldots, t_{k}\right)$ that yield a tuple in the fixed point reached by $\left(\Delta^{i}\right)_{i=0}^{\infty}$ with $\Delta^{0}=\emptyset$

Examples

- Transitive closure of a binary relation R.

$$
\begin{aligned}
& \left\{\langle u, v\rangle \mid\left[\mathbf{f p}_{\Delta: x, y}(R(x, y) \vee \exists z(R(x, z) \wedge \Delta(z, y)))\right](u, v)\right\} \\
\Longrightarrow & \text { all couples }(u, v) \text { in the transitive closure }
\end{aligned}
$$

- All nodes reachable from 0 .

$$
\left\{\langle v\rangle \mid\left[\mathbf{f p}_{\Delta: x, y}(R(x, y) \vee \exists z(R(x, z) \wedge \Delta(z, y)))\right](0, v)\right\}
$$

- Is there a path from 0 to 4 ?

$$
\left\{\rangle|\left[\mathbf{f}_{\Delta: x, y}(R(x, y) \vee \exists z(R(x, z) \wedge \Delta(z, y)))\right](0,4)\right\}
$$

- All couples not in the transitive closure.

$$
\begin{aligned}
\{\langle u, v\rangle \mid & \exists w(R(u, w) \vee R(w, u)) \wedge \exists w(R(v, w) \vee R(w, v)) \wedge \\
& \left.\neg\left[\mathbf{f p}_{\Delta: x, y}(R(x, y) \vee \exists z(R(x, z) \wedge \Delta(z, y)))\right](u, v)\right\}
\end{aligned}
$$

Example

Let R be ternary relation name with $\operatorname{sort}(R)=\{A, B, C\}$.
Let S be a unary relation name with $\operatorname{sort}(S)=\{A\}$.
An R-tuple $\{A: p, B: q, C: r\}$ encodes the propositional formula

$$
p \wedge q \rightarrow r
$$

An S-tuple $\{A: p\}$ encodes that p has truth value true.

Which propositions r must be true in every model of the formulas in R, given the truth values in S ?

$$
\left\{r \mid\left[\mathbf{f p}_{\Delta: x}(S(x) \vee \exists p \exists q(R(p, q, x) \wedge \Delta(p) \wedge \Delta(q)))\right](r)\right\}
$$

Syntactic Restrictions

$$
\left[\mathbf{f p}_{\Delta: x_{1}, \ldots, x_{k}}(\varphi)\right]\left(t_{1}, \ldots, t_{k}\right)
$$

Question:
What syntactic restrictions on φ guarantee that

$$
\emptyset=\Delta^{0}, \Delta^{1}, \Delta^{2}, \ldots
$$

will reach a fixed point?

Exercise

Let R be a binary relation that encodes a directed graph. Which vertices are in the answer of the following query?

$$
\begin{aligned}
\{z \mid & {\left[\mathbf{f p}_{\Delta: x}(\exists y(R(x, y) \vee R(y, x)) \wedge \forall y(R(y, x) \rightarrow \Delta(y)))\right](z) } \\
& \wedge \\
& \exists x R(x, z)\}
\end{aligned}
$$

Transitive Closure Logic

SPJRUD+TC adds a further restriction: whenever you write $\mathbf{f p}_{\Delta: S}(E)$, it must be the case that $\operatorname{sort}(E)=\vec{A} \vec{B} \vec{D}$ with $|\vec{A}|=|\vec{B}|$ and E computes, for every fixed \vec{D}-value \vec{d}, the transitive closure of the set of (\vec{A}, \vec{B})-values that occur with \vec{d};

$$
\begin{aligned}
\Longrightarrow & \text { if }\{\vec{A}: \vec{a}, \vec{B}: \vec{b}, \vec{D}: \vec{d}\} \text { and }\{\vec{A}: \vec{b}, \vec{B}: \vec{c}, \vec{D}: \vec{d}\} \text { are in } \\
& \text { the transitive closure, then so is }\{\vec{A}: \vec{a}, \vec{B}: \vec{c}, \vec{D}: \vec{d}\} .
\end{aligned}
$$

Note: separate transitive closure is computed for every value of \vec{D}.
Convenient notation: $\mathbf{t c}_{\vec{A} ; \vec{B}}(E)$
SPJRUD+TC has a lower complexity than SPJRUD+FP (NL versus \mathbf{P}).

Discussion and Exercises

See course notes.

[^0]: ${ }^{1}$ Since an expression is a subexpression of itself, these conditions apply also to $\mathbf{f p}_{\Delta: S}(E)$ itself.

