A Class of Probabilistic Automata Whose Value-One Problem is Decidable

Hugo Gimbert Youssouf Oualhadj

Games 10, Oxford

Septembre 22, 2010
1 is the initial state.

\{3\} is the set of accepting states

Formal definition

A probabilistic automaton is a tuple $A = (Q, \mathcal{A}, (M_a)_{a \in \mathcal{A}}, q_0, F)$.
1 is the initial state.

\{3\} is the set of accepting states.
1 is the initial state.

\{3\} is the set of accepting states.

Formal definition

A probabilistic automaton is a tuple $A = (Q, \Sigma, (M_a)_{a \in \Sigma}, q_0, F)$.

$P_{A(aaab)} = 1$ is the acceptance probability.
1 is the initial state.

\{3\} is the set of accepting states
1 is the initial state.

\{3\} is the set of accepting states.
1 is the initial state.

\{3\} is the set of accepting states

\(\mathbb{P}_\mathcal{A}(aab) = \frac{1}{4}\) the acceptance probability.
Probabilistic Automata

1 is the initial state.

\{3\} is the set of accepting states

\(P_A(aab) = \frac{1}{4}\) the acceptance probability.

Formal definition

A probabilistic automaton is a tuple \(\mathcal{A} = (Q, A, (M_a)_{a \in A}, q_0, F)\).
A bit of history

Given a probabilistic automaton \mathcal{A}, and a rational $0 < \lambda < 1$
A bit of history

Given a probabilistic automaton \(\mathcal{A} \), and a rational \(0 < \lambda < 1 \)

Emptiness problem (Rabin 63)
Is there a word \(w \in \mathcal{A}^* \) such that

\[
P_{\mathcal{A}}(w) \geq \lambda.
\]
A bit of history

Given a probabilistic automaton \mathcal{A}, and a rational $0 < \lambda < 1$

Emptiness problem (Rabin 63)
Is there a word $w \in \mathcal{A}^*$ such that

$$P_{\mathcal{A}}(w) \geq \lambda .$$

Proved undecidable by Paz in 1971.
A bit of history

Given a probabilistic automaton A, and a rational $0 < \lambda < 1$

Emptiness problem (Rabin 63)
Is there a word $w \in A^*$ such that

$$\mathbb{P}_A(w) \geq \lambda .$$

Proved undecidable by Paz in 1971.

Isolation problem (Rabin 63)
Is there a threshold $\varepsilon > 0$ such that

$$\forall w \in A^* \ |\mathbb{P}_A(w) - \lambda| \geq \varepsilon .$$

Proved undecidable by Bertoni in 1977.

Value-one problem
Is the special case of the isolation problem when $\lambda = 1$.
A bit of history

Given a probabilistic automaton \mathcal{A}, and a rational $0 < \lambda < 1$

Emptiness problem (Rabin 63)
Is there a word $w \in \mathcal{A}^*$ such that

$$\mathbb{P}_\mathcal{A}(w) \geq \lambda .$$

Proved undecidable by Paz in 1971.

Isolation problem (Rabin 63)
Is there a threshold $\varepsilon > 0$ such that

$$\forall w \in \mathcal{A}^* \ |\mathbb{P}_\mathcal{A}(w) - \lambda| \geq \varepsilon .$$

Proved undecidable by Bertoni in 1977.
A bit of history

Given a probabilistic automaton \mathcal{A}, and a rational $0 < \lambda < 1$

Emptiness problem (Rabin 63)
Is there a word $w \in \mathcal{A}^*$ such that

$$\mathbb{P}_{\mathcal{A}}(w) \geq \lambda .$$

Proved undecidable by Paz in 1971.

Isolation problem (Rabin 63)
Is there a threshold $\varepsilon > 0$ such that

$$\forall w \in \mathcal{A}^* \left| \mathbb{P}_{\mathcal{A}}(w) - \lambda \right| \geq \varepsilon .$$

Proved undecidable by Bertoni in 1977.

Value-one problem
Is the special case of the isolation problem when $\lambda = 1$.
Value-one problem

Definition
Let \mathcal{A} a probabilistic automaton. \mathcal{A} has the value 1 if:

$$\forall \varepsilon > 0, \exists w \in A^*, \mathbb{P}_\mathcal{A}(w) \geq 1 - \varepsilon.$$
Value-one problem

Definition
Let A a probabilistic automaton. A has the value 1 if:

$$\forall \varepsilon > 0, \exists w \in A^*, P_A(w) \geq 1 - \varepsilon.$$

Theorem (Gimbert, O. 2009)

The value 1 problem is undecidable.

Corollary
Given a non-deterministic automaton on finite words, it is undecidable whether there exist words such that the proportion of rejected runs over all possible computations is arbitrarily small.

Theorem (Gimbert, O. 2010)

The value-one problem is decidable for $\#$-acyclic automata.
Value-one problem

Definition
Let A a probabilistic automaton. A has the value 1 if:

$$\forall \varepsilon > 0, \exists w \in A^*, P_A(w) \geq 1 - \varepsilon.$$

Theorem (Gimbert, O. 2009)
The value 1 problem is undecidable.

Corollary
Given a non-deterministic automaton on finite words, it is undecidable whether there exist words such that the proportion of rejected runs over all possible computations is arbitrarily small.
Value-one problem

Definition
Let A a probabilistic automaton. A has the value 1 if:

$$\forall \varepsilon > 0, \ \exists w \in A^*, \ \mathbb{P}_A(w) \geq 1 - \varepsilon .$$

Theorem (Gimbert, O. 2009)
The value 1 problem is undecidable.

Corollary
Given a non-deterministic automaton on finite words, it is undecidable whether there exist words such that the proportion of rejected runs over all possible computations is arbitrarily small.

Theorem (Gimbert, O. 2010)
The value-one problem is decidable for #-acyclic automata.
Definition (\$\#\$-acyclic)

\$A\$ is \$\#\$-acyclic iff the associated support graph \$G_A\$ has no cycle except self-loops.
Definition ($\#$-acyclic)
A is $\#$-acyclic iff the associated support graph G_A has no cycle except self-loops.

Definition (Support graph)
G_A constructed from A the following way:

\[
\begin{align*}
G_A & \quad 1 \quad a, \frac{1}{2} \quad 2 \\
 & \quad a, \frac{1}{2} \\
\end{align*}
\]
#-acyclic automata

Definition (#-acyclic)

\(\mathcal{A} \) is #-acyclic iff the associated support graph \(G_{\mathcal{A}} \) has no cycle except self-loops.

Definition (Support graph)

\(G_{\mathcal{A}} \) constructed from \(\mathcal{A} \) the following way:
#-acyclic automata

Definition (#-acyclic)

\mathcal{A} is #-acyclic iff the associated support graph $\mathcal{G}_\mathcal{A}$ has no cycle except self-loops.

Definition (Support graph)

$\mathcal{G}_\mathcal{A}$ constructed from \mathcal{A} the following way:

\[1 \xrightarrow{a, \frac{1}{2}} 2 \xrightarrow{a, \frac{1}{2}} 1 \]

\[2 \xrightarrow{a} 1 \]

\[1 \xrightarrow{a} 1 \]

\[2 \xrightarrow{a} 2 \]
\#-acyclic automata

Definition (\#-acyclic)

\(\mathcal{A} \) is \#-acyclic iff the associated support graph \(G_\mathcal{A} \) has no cycle except self-loops.

Definition (Support graph)

\(G_\mathcal{A} \) constructed from \(\mathcal{A} \) the following way:
#-acyclic automata

Definition (#-acyclic)

A is #-acyclic iff the associated support graph G_A has no cycle except self-loops.

Definition (Support graph)

G_A constructed from A the following way:
Examples
Examples

\begin{itemize}
\item \{1, 2\}
\item \{1\} \quad \{2\}
\item \{1, 3\} \quad \{1, 2, 3, 4\} \quad \{2, 4\}
\item \{3\} \quad \{4\}
\item \{3, 4\}
\end{itemize}
Examples
Examples
Examples
Examples

\[
\begin{align*}
\{1, 3\} & \quad \xrightarrow{b} \quad \{1, 2, 3, 4\} \\
\{1\} & \quad \xrightarrow{a} \quad \{2\}
\end{align*}
\]

\[
\begin{align*}
\{3\} & \quad \xrightarrow{a^\#} \quad \{3, 4\}
\end{align*}
\]
Examples

\[
\begin{align*}
\{1, 2\} & \quad a \quad \{1\} \\
\{1, 2, 3, 4\} & \quad b \quad \{2\} \\
\{3, 4\} & \quad a \quad \{3\} \\
\{3, 4\} & \quad b \quad \{4\}
\end{align*}
\]
Why is it decidable?

Definition

- Reachability in the support graph is called $\#\text{-reachability}$.
- A set T is said to be limit-reachable from another set S if there exists a sequence $w_0, w_1, \cdots \in A^*$ such that:

$$\forall s \in S, \ P_A(s \xrightarrow{w_n} T) \xrightarrow{n \to \infty} 1.$$
Why is it decidable?

Definition

- Reachability in the support graph is called $\#$-reachability.
- A set T is said to be limit-reachable from another set S if there exists a sequence $w_0, w_1, \cdots \in A^*$ such that:

$$\forall s \in S, \quad \mathbb{P}_A(s \xrightarrow{w_n} T) \xrightarrow{n \to \infty} 1.$$

Key-property

In $\#$-acyclic automata:

$$\text{limit-reachability} \iff \#\text{-reachability}.$$
Why is it decidable?

Definition

- Reachability in the support graph is called \(\# \)-reachability.
- A set \(T \) is said to be limit-reachable from another set \(S \) if there exists a sequence \(w_0, w_1, \cdots \in A^* \) such that:

\[
\forall s \in S, \quad \mathbb{P}_A(s \xrightarrow{w_n} T) \xrightarrow{n \to \infty} 1.
\]

Key-property

In \(\# \)-acyclic automata:

\[
\text{limit-reachability } \iff \# \text{-reachability}.
\]

\[
(val_A = 1) \iff F \text{ is } \# \text{-reachable from } I.
\]
From ♯-path to limit path
From $\#$-path to limit path

\[
\begin{align*}
\{2\} & \xrightarrow{a} \{1, 2, 3\} & \{1, 2\} & \xleftarrow{a} \{1\} \\
\{3\} & \xrightarrow{b} \{2, 3\} \xrightarrow{a} \{1, 2, 3\} & \{2, 3\} & \xrightarrow{b} \{1, 2\} \\
\{1, 3\} & \xrightarrow{b} \{1, 2\} & \{1, 3\} & \xrightarrow{a} \{1, 2, 3\}
\end{align*}
\]
From $\#$-path to limit path
From $\#$-path to limit path

$$\mathbb{P}_A(ab^n) = 1 - \frac{1}{2^{n+2}}.$$
From limit path to $\#$-path

Flooding lemma

Assume

$$\forall a \in A, \ Q \cdot a = Q \cdot a^\# = Q.$$

Then, Q is the unique set
limit-reachable support from Q.

![Diagram](image-url)
From limit path to $\#$-path

Flooding lemma
Assume
\[\forall a \in A, \ Q \cdot a = Q \cdot a^\# = Q. \]

Then, Q is the unique set limit-reachable support from Q.

Leaf lemma
There exists a unique leaf S $\#$-reachable from Q. Every set limit-reachable from Q contains S.
Inductive step

If T is limit-reachable from S_0 then either:

- $S_0 = T$.
- $\exists S_1 \neq S_0$ s.t S_1 is $\#_\ell$-reachable from S_0 and T is limit-reachable from S_1.
Inductive step
If T is limit-reachable from S_0 then either:

► $S_0 = T$.

► $\exists S_1 \neq S_0$ such that S_1 is $\#^*$-reachable from S_0 and T is limit-reachable from S_1.

Proof.
Let $(u_n)_{n \in \mathbb{N}}$ be a limit-path from S_0 to T.

\[
\begin{array}{c}
\hspace{1cm} u_0 \hspace{1cm} \\
\hspace{1cm} \hspace{4cm} \hspace{1cm} \\
\hspace{1cm} u_1 \hspace{1cm} \\
\hspace{1cm} \hspace{4cm} \hspace{1cm} \\
\hspace{1cm} \vdots \\
\hspace{1cm} \hspace{4cm} \hspace{1cm} \\
\hspace{1cm} \vdots \\
\hspace{1cm} \hspace{4cm} \hspace{1cm} \\
\hspace{1cm} u_n \hspace{1cm} \\
\hspace{1cm} \hspace{4cm} \hspace{1cm} \\
\hspace{1cm} S_0 \hspace{4cm} T
\end{array}
\]
Inductive step

If \(T \) is limit-reachable from \(S_0 \) then either:

1. \(S_0 = T \).
2. \(\exists S_1 \neq S_0 \) s.t \(S_1 \) is \(\# \)-reachable from \(S_0 \) and \(T \) is limit-reachable from \(S_1 \).

Proof.

Let \((u_n)_{n \in \mathbb{N}} \) be a limit-path from \(S_0 \) to \(T \).

Let \(A_0 = \{ a \in A \mid S_0 \cdot a = S_0 \} \).
Inductive step

If T is limit-reachable from S_0 then either:

- $S_0 = T$.
- $\exists S_1 \neq S_0 \text{ s.t } S_1$ is $\#$-reachable from S_0 and T is limit-reachable from S_1.

Proof.

Let $(u_n)_{n \in \mathbb{N}}$ be a limit-path from S_0 to T.

Let $A_0 = \{a \in A \mid S_0 \cdot a = S_0\}$.

\[S_0 \xrightarrow{(\delta S_0 \cdot v_n)} \delta \xrightarrow{w_n} T \]
Inductive step

If \(T \) is limit-reachable from \(S_0 \) then either:

- \(S_0 = T \).
- \(\exists S_1 \neq S_0 \) s.t \(S_1 \) is \(\# \)-reachable from \(S_0 \) and \(T \) is limit-reachable from \(S_1 \).

Proof.
Let \((u_n)_{n \in \mathbb{N}} \) be a limit-path from \(S_0 \) to \(T \).

Let \(A_0 = \{ a \in A \mid S_0 \cdot a = S_0 \} \).
\[\text{Supp}(\delta) = S_0: \ S_1 = \text{Supp}(\delta) \cdot b. \]
Inductive step

If T is limit-reachable from S_0 then either:

- $S_0 = T$.
- $\exists S_1 \neq S_0$ s.t S_1 is ♯-reachable from S_0 and T is limit-reachable from S_1.

Proof.

Let $(u_n)_{n \in \mathbb{N}}$ be a limit-path from S_0 to T.

Let $A_0 = \{ a \in A \mid S_0 \cdot a = S_0 \}$.

Supp$(\delta) = S_0$: $S_1 = \text{Supp}(\delta) \cdot b$.

Supp$(\delta) \neq S_0$: Apply the leaf lemma to $\mathcal{A}[S_0, A_0]$, let S_1 the unique ♯-reachable leaf.
Conclusion

- Find larger class of probabilistic automata for which the value-one problem is decidable.
- Extend this result to the general case of stochastic games of imperfect informations.