
Certain Query Answering in Partially Consistent Databases

Sergio Greco
University of Calabria

Italy

greco@deis.unical.it

Fabian Pijcke
University of Mons

Belgium

fabian.pijcke@umons.ac.be

Jef Wijsen
University of Mons

Belgium

jef.wijsen@umons.ac.be

ABSTRACT

A database is called uncertain if two or more tuples of the
same relation are allowed to agree on their primary key.
Intuitively, such tuples act as alternatives for each other.
A repair (or possible world) of such uncertain database is
obtained by selecting a maximal number of tuples without
ever selecting two tuples of the same relation that agree
on their primary key. For a Boolean query q, the problem
CERTAINTY(q) takes as input an uncertain database db
and asks whether q evaluates to true on every repair of db.
In recent years, the complexity of CERTAINTY(q) has been
studied under different restrictions on q. These complex-
ity studies have assumed no restrictions on the uncertain
databases that are input to CERTAINTY(q). In practice,
however, it may be known that these input databases are
partially consistent, in the sense that they satisfy some de-
pendencies (e.g., functional dependencies). In this article,
we introduce the problem CERTAINTY(q) in the presence
of a set Σ of dependencies. The problem CERTAINTY(q,Σ)
takes as input an uncertain database db that satisfies Σ,
and asks whether every repair of db satisfies q.
We focus on the complexity of CERTAINTY(q,Σ) when

q is an acyclic conjunctive query without self-join, and Σ
is a set of functional dependencies and join dependencies,
the latter of a particular form. We provide an algorithm
that, given q and Σ, decides whether CERTAINTY(q,Σ) is
first-order expressible. Moreover, we show how to effectively
construct a first-order definition of CERTAINTY(q,Σ) if it
exists.

1. MOTIVATION
An uncertain database is a database that can contain zero,

one, or more primary key violations. Two or more tuples of
the same relation that agree on their primary key act as
alternatives for each other and thus represent uncertainty.
We will always assume exactly one primary key per relation.
For example, consider the relations R and S in Figure 1,
where primary keys are underlined. Employees are uniquely

identified by their first and last name. The relation S gives
touristic appreciations for cities in terms of Michelin stars.
There is uncertainty about the salary and the residence of Ed
Smith, about the birth year of An Allen, about the touristic
value of the city of Acri, and about the country of Mons.
Such uncertainty may result from data integration, or may
reflect divergent opinions, e.g., concerning touristic value. In
planning databases, key-equal tuples can be useful to model
different possible choices.1

Uncertainty could be solved by removing duplicates. In
practice, however, it may not be clear which tuples should be
deleted. Instead of making arbitrary deletions, a more prin-
cipled approach is to cope with all possible ways of restoring
consistency, as explained next.

A repair (or possible world) of an uncertain database db
is a maximal consistent subset of db. In general, the number
of repairs of db is exponential in the size of db. To answer
queries on uncertain databases, we follow the paradigm of
consistent query answering [3, 5], which we also refer to
as certain query answering . Given a Boolean query q, the
problem CERTAINTY(q) takes as input an uncertain data-
base db and asks whether q evaluates to true on every repair
of db. In the last few years, the complexity of this problem
has been studied in particular for q ranging over the class
of Boolean conjunctive queries without self-join [16, 17, 30,
31, 32, 33]. In this case, the complexity varies from AC0 to
coNP-complete, depending on q.

All existing works on CERTAINTY(q) have assumed that
primary keys are the only integrity constraints involved, and
that they can be violated at any one time. However, in
practice, some primary keys or some other constraints may
well be satisfied. This happens, for example, when some
(but not all) constraints are enforced by the database sys-
tem. In this article, we study the problem CERTAINTY(q) in
the presence of a set Σ of functional and join dependencies.

The problem CERTAINTY(q,Σ) takes as input an uncertain
database db that satisfies Σ, and asks whether q evaluates
to true on every repair of db. Thus, the only constraints
that can be violated are primary keys not implied by Σ. We
next illustrate the interest of this problem by two examples.

Example 1. Although the relation R in Figure 1 violates
its primary key, it can be observed that the functional de-
pendency (FD) R : City → Country (call it σ1) holds (but
S : City → Country is violated).

1For this reason, we prefer the term uncertain database over
inconsistent database.

1

R First Last Birth Sal City Country

Ed Smith 1960 50K Acri Italy
Ed Smith 1960 50K Mons Belgium
Ed Smith 1960 60K Acri Italy
Ed Smith 1960 60K Mons Belgium
An Allen 1970 40K Mons Belgium
An Allen 1971 40K Mons Belgium

S City Country Stars

Acri Italy ∗∗
Acri Italy ∗ ∗ ∗
Mons Belgium ∗ ∗ ∗
Mons France ∗ ∗ ∗

Figure 1: Uncertain database satisfying functional dependency R : City → Country and join dependency
R :1 [{First,Last,Birth}, {First,Last,Sal}, {First,Last,City,Country}].

Consider the conjunctive query q1 asking whether some
employees live in three-star cities:

q1 = ∃u∃v∃w∃x∃y∃z
(
R(u, v, w, x, y, z) ∧ S(y, z, ‘∗ ∗ ∗’)

)
.

Earlier work [17] implies that CERTAINTY(q1) is coNP-
complete. Nevertheless, the results in the current article will
imply that CERTAINTY(q1, {σ1}) is first-order expressible
and hence in the low complexity class AC0. In practice,
this means that the problem can be solved by a single SQL
query. Thus, in the presence of an FD that is satisfied,
the complexity of certain query answering can significantly
decrease, from intractable to highly tractable, even if that
FD is not a key dependency.

Example 2. The relation R of Figure 1 stores three kinds
of information about employees: year of birth (attribute
Birth), salary (attribute Sal), and residence (composite
attribute composed of City and Country). In a consis-
tent database, these attributes are single-valued for each
employee. On the other hand, the inconsistent relation R
of Figure 1 stores two distinct salaries and two distinct resi-
dences for Ed Smith. It can be observed though that all four
combinations of these conflicts occur in R. More generally,
it can be observed that the relation R satisfies the following
join dependency (JD):

R :1

{First,Last,Birth},
{First,Last,Sal},
{First,Last,City,Country}

 .

The three components of the above join dependency share
the primary key {First,Last} of R. We will use the term
key join dependency (KJD) for join dependencies in which
all components share the primary key (and share no other
attribute). KJDs automatically arise in relations that are
obtained by joining source relations on some common key.
In the example, the relation R was obtained by integrating
three sources: a first source containing birth years, a sec-
ond source with salaries, and a third source with residences.
Otherwise, if conflicts in different attributes can be assumed
to be independent, then it may be sensible to induce KJD
satisfaction by combining conflicting values in all possible
ways [28].

In this article, we study the complexity of the problem
CERTAINTY(q,Σ) when q is an acyclic Boolean conjunctive
query without self-join, and Σ is a set of FDs and KJDs,
containing at most one KJD per relation name. In par-
ticular, we show that it is decidable to determine whether
CERTAINTY(q,Σ) is first-order expressible (and hence in the
low complexity class AC0). This contribution is of practical
relevance, because it tells us which cases of CERTAINTY(q,Σ)
can be solved by standard “first-order” SQL capabilities.

Conceptually, our work adds flexibility to consistent query
answering [3, 5]. Most existing works in this field have
assumed that all constraints can be potentially violated.
In our approach, we distinguish two classes of constraints:
those that may be violated (primary keys in our setting),
and those that are known to be satisfied. In practice, one
may learn the satisfied constraints in various ways: one may
simply look at the data and “mine” dependencies that hold;
one may know that the database system enforces some con-
straints; or one may have partially cleansed the data to sat-
isfy some constraints. In any way, the knowledge about sat-
isfied constraints can be favorably exploited in certain query
answering.

This article is organized as follows. Section 2 introduces
the theoretical framework and the problem statement. Sec-
tion 3 discusses more related work in addition to the works
already discussed in the current section. Section 4 recalls the
notion of attack graph [32], which will turn out to be an im-
portant tool in the complexity study of CERTAINTY(q,Σ).
Section 5 extends the notion of attack graph to deal with
FDs and KJDs, and shows that it is decidable, given q and
Σ, whether CERTAINTY(q,Σ) is first-order expressible. Sec-
tion 6 explains how to effectively construct a first-order def-
inition of CERTAINTY(q,Σ) if it exists. Section 7 discusses
the practical implications of our theoretical contribution.
Finally, Section 8 concludes the article. The missing proofs
of lemmas and theorems can be found in the full version of
this paper.

2. PROBLEM STATEMENT
We assume disjoint sets of variables and constants. Vari-

ables and constants are symbols. If ~x is a sequence of sym-
bols, then Vars(~x) is the set of variables that occur in ~x. If S
is a set of symbols, then Vars(S) is the set of variables that
belong to S.

Let U be a set of variables. A valuation over U is a total
mapping θ from U to the set of constants. Such valuation
θ is often extended to be the identity on constants and on
variables not in U .

Atoms and keyequal facts. Every relation name R has a
unique signature, which is a pair [n, k] with n ≥ k ≥ 1: the
integer n is the arity of the relation name and {1, 2, . . . , k} is
the primary key . The relation name R is all-key if n = k. If
R is a relation name with signature [n, k], then R(s1, . . . , sn)
is an R-atom (or simply atom), where each si is a constant
or a variable (1 ≤ i ≤ n). Such atom is commonly writ-
ten as R(~x, ~y) where ~x = s1, . . . , sk and ~y = sk+1, . . . , sn.
Thus, the positions of the primary key will be underlined.
An R-fact (or simply fact) is an R-atom in which no vari-

2

able occurs. Two facts R1(~a1,~b1), R2(~a2,~b2) are key-equal if
R1 = R2 and ~a1 = ~a2.

Uncertain database and repair. A database schema is a
finite set of relation names. An uncertain database db over
a given database schema is a finite set of facts using only
the relation names of the schema. Importantly, an uncertain
database is allowed to violate primary key constraints. An
uncertain database db is consistent if it does not contain two
distinct facts that are key-equal. A repair of an uncertain
database db is a maximal (under set inclusion) consistent
subset of db. We write rset(db) for the set of repairs of db.

Boolean conjunctive query. A Boolean conjunctive query

is a finite set q = {R1(~x1, ~y1), . . . , Rn(~xn, ~yn)} of atoms,
representing the first-order sentence

∃u1 · · · ∃uk(R1(~x1, ~y1) ∧ · · · ∧Rn(~xn, ~yn)),

where u1, . . . , uk are all the variables that have an occur-
rence in ~x1~y1 . . . ~xn~yn. The schema of q, denoted schema(q),
is the set of relation names that occur in q. We write Vars(q)
for the set of variables that occur in q.
The query q is satisfied by an uncertain database db,

denoted db |= q, if there exists a valuation θ over Vars(q)
such that for each i ∈ {1, . . . , n}, Ri(θ(~xi), θ(~yi)) ∈ db.
The restriction to Boolean queries simplifies the technical
treatment, but is not fundamental as explained in Section 6.
We will use letters A, B, C for database facts, and F ,

G, H, I for query atoms. For F = R(~x, ~y), we denote by
KVars(F) the set of variables that occur in ~x, and by Vars(F)
the set of variables that occur in F , that is, KVars(F) =
Vars(~x) and Vars(F) = Vars(~x) ∪ Vars(~y).
We say that query q has a self-join if some relation name

occurs more than once in q. If q has no self-join, it is called
self-join-free. We denote by SJFCQ the class of self-join-free
conjunctive queries.
A Boolean conjunctive query q is acyclic if it has a join

tree [4]. A join tree for q is an undirected tree whose vertices
are the atoms of q such that for every variable x in Vars(q),
the set of vertices in which x occurs induces a connected
subtree. It is common to label, in a join tree, each edge
with the set of variables common to its end points. We

write F
L

a G to denote an edge between F and G with label
L, where L = Vars(F) ∩ Vars(G).

Example 3. A join tree is shown in Figure 2 (left).

Certain query answering. Let q be an acyclic Boolean
SJFCQ query. The problem of certain query answering is
the following [30].

Problem: CERTAINTY(q)
Input: uncertain database db
Question: does every repair of db satisfy q?

It is well known that the problem CERTAINTY(q) is in coNP,
and that its complexity varies for varying q from AC0 to
coNP-complete.

Certain query answering in the presence of constraints.
Let R be a relation name with signature [n, k]. A key join

dependency (KJD) has the form R :1 [K1, . . . ,Kℓ] with ℓ ≥
1 such that

1.
⋃ℓ

i=1
Ki = {1, . . . , n};

2. for every 1 ≤ i < j ≤ ℓ, we have Ki 6= Kj and Ki ∩
Kj = {1, . . . , k}.

A functional dependency (FD) has the form

R : i1, i2, . . . , im → ℓ,

where 1 ≤ i1 < i2 < · · · < im ≤ n and ℓ ∈ {1, . . . , n},
ℓ 6∈ {i1, . . . , im}. We will assume m ≥ 1, although the tech-
nical treatment can be easily extended to treat FDs with an
empty left-hand side. Notice that in the running example of
Section 1, for readability reasons, attributes were denoted
by names instead of positions.

The following definition of satisfaction of KJDs and FDs
is standard (see, e.g., [1, page 159]). Let db be an uncer-
tain database. Two R-facts R(a1, . . . , ak, ak+1, . . . , an) and
R(b1, . . . , bk, bk+1, . . . , bn) are said to agree on position i if
ai = bi, where i ∈ {1, . . . , n}. We say that db satisfies

R :1 [K1, . . . ,Kℓ] if whenever A1, . . . , Aℓ are key-equal R-
facts of db, then there exists an R-fact B ∈ db such that
for all i ∈ {1, . . . , ℓ}, B and Ai agree on all positions in Ki.
We say that db satisfies R : i1, i2, . . . , im → ℓ if for all R-
facts A,B ∈ db, if A and B agree on all positions among
i1, . . . , im, then they agree on position ℓ. If σ is an FD or a
KJD, then we write db |= σ to denote that db satisfies σ.

We say that a set Σ of KJDs and FDs is jd-singular if it
does not contain two distinct KJDs with the same relation
name; the number of FDs per relation name is not restricted.
It will always be assumed that all relation names in Σ belong
to schema(q) for some query q that is clear from the context.

Let q be an acyclic Boolean SJFCQ query. Let Σ be a jd-
singular set of KJDs and FDs. The problem of certain query
answering in the presence of constraints is the following.

Problem: CERTAINTY(q,Σ)
Input: uncertain database db such

that db |= Σ
Question: does every repair of db satisfy q?

If Σ = ∅, then CERTAINTY(q,Σ) is the same problem as
CERTAINTY(q). The problem CERTAINTY(q,Σ) is in coNP,
because if the answer to CERTAINTY(q,Σ) is “no,” then a
“no”-certificate is a repair of db that satisfies Σ and falsifies
q. We are interested in deciding its complexity for varying
q and Σ, in particular:

1. Is it decidable to determine, given q and Σ,
whether CERTAINTY(q,Σ) is first-order ex-
pressible?

2. Is it decidable to determine, given q and Σ,
whether CERTAINTY(q,Σ) is in P?

3. Is it decidable to determine, given q and Σ,
whether CERTAINTY(q,Σ) is coNP-hard?

Saying that CERTAINTY(q,Σ) is first-order expressible is
tantamount to saying that there exists a first-order sentence
ϕ such that for every uncertain database db that satisfies
Σ, the following are equivalent:

• Every repair of db satisfies q.

• db |= ϕ.

3

Such a first-order sentence ϕ is called a first-order defini-
tion of CERTAINTY(q,Σ), or alternatively, a consistent first-

order rewriting of q relative to Σ. Its practical interest is
obvious: ϕ can be encoded in SQL and executed on any un-
certain database by means of standard database technology.
The aforementioned questions 2 and 3 are open, even for

Σ = ∅. Question 1 has been answered for Σ = ∅ in [30, 32].
In the current article, we answer question 1 affirmatively, as
follows.

Theorem 1. For a given q and Σ, it is decidable whether

CERTAINTY(q,Σ) is first-order expressible, where

• q is an acyclic Boolean SJFCQ query, and

• Σ is a jd-singular set of KJDs and FDs.

Moreover, if CERTAINTY(q,Σ) is first-order expressible, then
a first-order definition of CERTAINTY(q,Σ) can be effec-

tively constructed.

Theorem 1 is a fairly deep result of practical interest. Its
proof will be developed from Section 5 on. We briefly discuss
the remaining restrictions on queries and constraints. The
restriction to conjunctive queries that are acyclic and self-
join-free allows us to use results proved in [32]. It is known
since the early 1980s that the class of acyclic conjunctive
queries has several elegant and useful characterizations [4].
The proof of Theorem 1 also relies on the hypothesis that
Σ contains at most one KJD per relation name. This KJD
can express that a relation is equal to a join of multiple
relations that share the same primary key, as illustrated in
Example 2.

3. RELATED WORK
Database repairing and consistent query answering were

introduced in [3] for dealing with inconsistency in databases.
They provide an elegant and principled alternative for data
cleansing. Different notions of repair have been proposed
in the literature, among others, symmetric-difference re-
pairs [3], subset repairs [9], cardinality repairs [2, 20], update-
based repairs [6, 7, 27], project-join repairs [28]. . . See also
the survey [5]. If the only constraints are primary keys, then
there is no difference between symmetric-difference, subset,
and cardinality repairs. Most works have assumed that all
constraints can potentially be violated. Notable exceptions
are [6] and [19]. In [6], all primary keys are assumed to be
satisfied, and only non-key attributes are subject to modi-
fication. The framework of [19] allows one to specify that
some primary keys are satisfied.
For any fixed repair notion, there are two semantics for

answering a Boolean query q. Under the certain semantics,
the question is whether q is true in every repair. Under the
possible semantics, the question is whether q is true in some
repair. In this paper, we adopt the certain semantics.
Repairing has been studied with respect to different types

and combinations of constraints, among others, denial con-
straints [6], inclusion dependencies [8], functional dependen-
cies and foreign keys [22], tuple-generating and equality-
generating dependencies [25], aggregate constraints [13]. . .
The problem CERTAINTY(q) assumes that the constraints
consist of one primary key per relation.
The detailed investigation of CERTAINTY(q) was pioneered

by Fuxman and Miller [15, 16], who defined a class of self-
join-free conjunctive queries q for which CERTAINTY(q) is

first-order expressible. Since then, the following complexity
classification problem has gained considerable research in-
terest: Given a conjunctive query q on input, determine the
complexity classes to which the problem CERTAINTY(q) be-
longs, or does not belong. For conjunctive queries with self-
joins, this complexity classification problem remains largely
open, which is likely due to the difficulty of treating self-
joins. For self-join-free conjunctive queries, the following
are known (all queries are assumed Boolean):

• Given an acyclic self-join-free conjunctive query q, it is
decidable whether or not CERTAINTY(q) is first-order
expressible [32].

• For each self-join-free conjunctive query q with exactly
two atoms, CERTAINTY(q) is either in P or coNP-
complete, and it is decidable which of the two cases ap-
plies [17]. The sufficient condition for coNP-complete-
ness has later on been generalized to more than two
atoms [33].

• For each self-join-free conjunctive query q in which all
primary keys are either simple or contain all attributes
of the relation, CERTAINTY(q) is either in P or coNP-
complete, and it is decidable which of the two cases
applies [19].

It remains an intriguing open conjecture that for each self-
join-free conjunctive query q, CERTAINTY(q) is either in P
or coNP-complete. Existing systems for solving the prob-
lem CERTAINTY(q) will be discussed in Section 7.

All aforementioned results assume queries without self-
join. For queries q with self-joins, only fragmentary results
about the complexity of CERTAINTY(q) are known [9, 29].

The counting variant of CERTAINTY(q), which has been
denoted ♮CERTAINTY(q), takes as input an uncertain data-
base db and asks to determine the number of repairs of
db that satisfy Boolean query q. As shown in [33], this
problem is intimately related to query answering in block-
independent-disjoint (BID) probabilistic databases [10, 11].
Maslowski andWijsen [21] have proved that for each Boolean
SJFCQ query q, the counting problem ♮CERTAINTY(q) is ei-
ther in FP or ♮P-complete, and it is decidable which of the
two is the case.

4. ATTACK GRAPH
In this section, we recall the construct of attack graph,

which was introduced in [32]. The attack graph is a directed
graph that is defined for every acyclic Boolean SJFCQ query.
The main result of [32] is that for every acyclic Boolean
SJFCQ query q, CERTAINTY(q) is first-order expressible if
and only if q’s attack graph is acyclic (see Theorem 2 here-
inafter). Attack graphs will also be a useful tool in the study
of CERTAINTY(q,Σ).

The primary key of an atom F gives rise to a functional
dependency among the variables that occur in F . For ex-
ample, R(x, y, z, u) gives rise to {x, y} → {x, y, z, u}, which
will be abbreviated as xy → xyzu (and which is equivalent
to xy → zu). Notice that the functional dependencies of the
form X → Y , with X,Y sets of variables, are always relative
to a given query, and are thus different in nature from the
FDs among positions (of the form R : i1, . . . , im → ℓ) con-
sidered in Section 2. The set K(q) defined next collects all
functional dependencies that arise in atoms of the query q.

4

R(u, a, x) = F

S(y, x, z) = G

T (x, y) = H U(x, z) = I

{x}

{x, y} {x, z}

R(u, a, x) = F

S(y, x, z) = G

T (x, y) = H U(x, z) = I

Figure 2: Join tree τ2 (left) and attack graph (right) of query q2.

Definition 1. Let q be a Boolean conjunctive query. We
define K(q) as the following set of functional dependencies.

K(q) = {KVars(F) → Vars(F) | F ∈ q}

Concerning the following definition, recall from relational
database theory [26, page 387] that if Σ is a set of functional
dependencies over a set U of attributes and X ⊆ U , then
the attribute closure of X (with respect to Σ) is the set
{A ∈ U | Σ |= X → A}.

Definition 2. Let q be a Boolean conjunctive query. For
every F ∈ q, we define F+,q as the following set of variables.

F+,q = {x ∈ Vars(q) | K(q \ {F}) |= KVars(F) → x}

In words, F+,q is the attribute closure of the set KVars(F)
with respect to the set of functional dependencies that arise
in the atoms of q \ {F}.

Example 4. Consider the query q2 = {R(u, a, x), S(y, x, z),
T (x, y), U(x, z)}, where a is a constant. A join tree for
this query is shown in Figure 2 (left). To shorten nota-
tion, let F = R(u, a, x), G = S(y, x, z), H = T (x, y), and
I = U(x, z), as indicated in the figure. We have the follow-
ing.

K(q2 \ {F}) = {y → xyz, x→ xy, x→ xz}
KVars(F) = {u} and F+,q2 = {u}

K(q2 \ {G}) = {u→ ux, x→ xy, x→ xz}
KVars(G) = {y} and G+,q2 = {y}

K(q2 \ {H}) = {u→ ux, y → xyz, x→ xz}
KVars(H) = {x} and H+,q2 = {x, z}

K(q2 \ {I}) = {u→ ux, y → xyz, x→ xy}
KVars(I) = {x} and I+,q2 = {x, y, z}

Definition 3. Let q be a Boolean conjunctive query that
is acyclic. Let τ be a join tree for q. The attack graph of τ is
a directed graph whose vertices are the atoms of q. There is
a directed edge from F to G if F,G are distinct atoms such
that for every label L on the unique path that links F and
G in τ , we have L * F+,q.

We write F
τ
 G if the attack graph of τ contains a di-

rected edge from F to G. The directed edge F
τ
 G is also

called an attack from F to G. If F
τ
 G, we say that F

attacks G (or that G is attacked by F).

Example 5. This is a continuation of Example 4. Figure 2
(left) shows a join tree τ2 for query q2. The attack graph of
τ2 is shown in Figure 2 (right) and is computed as follows.

Let us first compute the attacks outgoing from F . The

path from F to G in the join tree is F
{x}

a G. Since the label
{x} is not contained in F+,q2 , the attack graph contains a

directed edge from F to G, i.e., F
τ2
 G. The path from F

to H in the join tree is F
{x}

a G
{x,y}

a H. Since no label on
that path is contained in F+,q2 , the attack graph contains a
directed edge from F to H. In the same way, one finds that
F attacks I.

Let us next compute the attacks outgoing from H. The

path from H to G in the join tree is H
{x,y}

a G. Since
the label {x, y} is not contained in H+,q2 , the attack graph

contains a directed edge fromH toG, i.e., H
τ2
 G. The path

from H to F in the join tree is H
{x,y}

a G
{x}

a F . Since the
label {x} is contained in H+,q2 , the attack graph contains
no directed edge from H to F . And so on. The complete
attack graph is shown in Figure 2 (right).

It was shown in [32] that if τ1 and τ2 are distinct join trees
for the same conjunctive query q, then the attack graph of
τ1 is identical to the attack graph of τ2. This motivates the
following definition.

Definition 4. Let q be a Boolean conjunctive query that
is acyclic. The attack graph of q is the attack graph of τ for

any join tree τ for q. We write F
q
 G (or simply F G if

q is clear from the context) to indicate that the attack graph
of q contains a directed edge from F to G.

The attack graph of an acyclic Boolean query q can be
computed in quadratic time in the length of q [32]. The
main result in [32] is the following.

Theorem 2 ([32]). The following are equivalent for all

acyclic Boolean SJFCQ queries q:

1. The attack graph of q is acyclic.

2. CERTAINTY(q) is first-order expressible.

Example 6. Figure 3 shows the attack graph of q1 intro-
duced in Section 1. Let F = R(u, v, w, x, y, z) and G =

S(y, z, ‘∗ ∗ ∗’). We have F+,q1 = {u, v} and G+,q1 = {y}.

5

R(u, v, w, x, y, z) S(y, z, ‘∗ ∗ ∗’)

Figure 3: Attack graph of query q1.

Since the shared variable z does not occur in F+,q1 or G+,q1 ,
the atoms F and G mutually attack one another. Since the
attack graph is cyclic, CERTAINTY(q1) is not first-order ex-
pressible.

5. PRESENCE OF KJDS AND FDS
In this section, given an acyclic Boolean SJFCQ query

q and a set Σ of dependencies, we compute a new query
denoted q ⊗ Σ. This new query will also be conjunctive,
acyclic, and self-join-free. The main result will be that
CERTAINTY(q,Σ) is first-order expressible if and only if the
attack graph of q ⊗ Σ is acyclic (Theorem 3).
The operator ⊗ transforms query atoms and database

facts according to FDs and KJDs. We provide an exam-
ple before giving the technical definition.

Example 7. Assume an atom F = R(a1, a2, a3, a4, a5) with
signature [5, 2].

• An FD R : 2, 3 → 4 (call it σ) will add to F two new
atoms Rσ

1 (a2, a3, a4) and R
σ
2 (a2, a3, a4). Here, Rσ

1 and
Rσ

2 are two new relation names which depend on σ.
The two atoms differ in their relation names but are
otherwise identical.

• A KJD R :1 [{1, 2, 3}, {1, 2, 4, 5}] will replace the atom

F with three atoms R̂(a1, a2, a3, a4, a5), R
1

1 (a1, a2, a3),

and R1

2 (a1, a2, a4, a5). Here, R̂ is a new relation name
that is all-key, and R1

1 , R
1

2 are new relation names
corresponding to the first and the second component
of the KJD.

Definition 5. Let q be an acyclic Boolean SJFCQ query.
Let db be an uncertain database such that all relation names
of db belong to schema(q).
Let Σ = Σ1 ∪ Σ2 where Σ1 is a jd-singular set of KJDs

and Σ2 is a set of FDs (with zero or more FDs per rela-
tion name). The SJFCQ query q ⊗ Σ and the uncertain
database db ⊗ Σ are defined as follows. For every atom
F = R(s1, . . . , sk, sk+1, . . . , sn) of q,

1. If Σ1 contains no KJD for R, then q ⊗ Σ contains F
and db⊗ Σ contains all R-facts of db.

2. If Σ1 contains a KJD for R, then q ⊗ Σ contains the

atom R̂(s1, . . . , sn) where R̂ is a new relation name

with signature [n, n]. That is, R̂ is all-key.

For every R(a1, . . . , ak, ak+1, . . . , an) of db, it is the

case that db⊗ Σ contains R̂(a1, . . . , an).

3. If Σ1 contains KJD R :1 [K1, . . . ,Kℓ], then for each
i ∈ {1, . . . , ℓ}, the SJFCQ query q ⊗ Σ contains a
new R1

i -atom. If Ki = {1, . . . , k, j1, . . . , jm} where
k < j1 < · · · < jm ≤ n, then the new R1

i -atom is
R1

i (s1, . . . , sk, sj1 , . . . , sjm), where R1

i is a new rela-
tion name of signature [k +m, k].

For every R(a1, . . . , ak, ak+1, . . . , an) of db, it is the
case that db⊗Σ contains R1

i (a1, . . . , ak, aj1 , . . . , ajm).

4. If Σ2 contains FD R : i1, i2, . . . , im → ℓ (call it σ), then
q⊗Σ contains two new atoms Rσ

1 (si1 , . . . , sim , sℓ) and

Rσ
2 (si1 , . . . , sim , sℓ), where Rσ

1 and Rσ
2 are two new

relation names with signature [m+ 1,m].

For every R(a1, . . . , ak, ak+1, . . . , an) of db, it is the
case that db⊗Σ contains the facts Rσ

1 (ai1 , . . . , aim , aℓ)

and Rσ
2 (ai1 , . . . , aim , aℓ).

5. q ⊗ Σ contains no other atoms than those specified in
items 1–4; db ⊗ Σ contains no other facts than those
specified in items 1–4.

We refer to relation names R̂, R1

i , R
σ
1 , and Rσ

2 as spuri-

ous relation names. Atoms that contain a spurious relation
name are called spurious atoms.

Example 8. Let q3 = {R(x, y, z), S(y, u, x, z)}. Let Σ3 be
the set of dependencies containing KJD R :1 [{1, 2}, {1, 3}]
and FD S : 3, 4 → 1 (call it σ3). The query q3⊗Σ3 contains
the following atoms:

• R̂(x, y, z) where R̂ has signature [3, 3];

• R1

1 (x, y) where R
1

1 has signature [2, 1] and corresponds
to the first component of the KJD;

• R1

2 (x, z) where R
1

2 has signature [2, 1] and corresponds
to the second component of the KJD;

• S(y, u, x, z). Notice that Σ3 contains no KJD for S;
and

• Sσ3

1 (x, z, y) and Sσ3

2 (x, z, y) where Sσ3

1 and Sσ3

2 both
have signature [3, 2].

A join tree for q3 ⊗ Σ3 is shown in Figure 4 (left).

The following lemma states that the operator ⊗ is first-
order expressible.

Lemma 1. Let q be an acyclic Boolean SJFCQ query. Let

Σ be a jd-singular set of KJDs and FDs. For every spurious

relation name S in q⊗Σ, there exists a first-order query ψS

such that for every uncertain database db over schema(q),
the set of S-facts of db⊗ Σ is equal to ψS(db).

Proof. For every spurious relation name S, the query
ψS is a projection.

Example 8 showed that the query q3 ⊗Σ3 has a join tree.
The following lemma shows that in general, if q is acyclic,
then so is q ⊗ Σ.

Lemma 2. If q is an acyclic Boolean SJFCQ query, and

Σ is a jd-singular set of KJDs and FDs, then q ⊗ Σ is an

acyclic Boolean SJFCQ query.

Lemma 3. Let q be an acyclic Boolean SJFCQ query. Let

Σ = Σ1 ∪ Σ2 where Σ1 is a jd-singular set of KJDs and Σ2

is a set of FDs. The following statements are equivalent for

every uncertain database db over schema(q) that satisfies Σ:

1. Every repair of db satisfies q.

2. Every repair of db⊗ Σ satisfies q ⊗ Σ.

The following examples illustrate that in Lemma 3, it is
important to require that db |= Σ.

6

R̂(x, y, z)R1

1 (x, y) R1

2 (x, z)

S(y, u, x, z)

Sσ3

1 (x, z, y) Sσ3

2 (x, z, y)

{x, y} {x, z}

{x, y, z}

{x, y, z} {x, y, z}

R̂(x, y, z)R1

1 (x, y) R1

2 (x, z)

S(y, u, x, z)

Sσ3

1 (x, z, y) Sσ3

2 (x, z, y)

Figure 4: Join tree (left) and attack graph (right) of query q3 ⊗ Σ3 of Example 8, where σ3 = S : 3, 4 → 1.

Example 9. Let q = {R(x, y, z)} and let Σ be the single-
ton containing KJD R :1 [{1, 2}, {1, 3}]. We have q ⊗ Σ =

{R̂(x, y, z), R1

1 (x, y), R
1

2 (x, z)}.
Let db = {R(a, b1, b2), R(a, c1, c2)}, which falsifies the

KJD in Σ. We have db ⊗ Σ = {R̂(a, b1, b2), R̂(a, c1, c2),
R1

1 (a, b1), R
1

1 (a, c1), R
1

2 (a, b2), R
1

2 (a, c2)}.
Clearly, every repair of db satisfies q. However, the set

{R̂(a, b1, b2), R̂(a, c1, c2), R
1

1 (a, b1), R
1

2 (a, c2)} is a repair of
db⊗ Σ that falsifies q ⊗ Σ.

Example 10. Let q = {R(x, y, z)} and let Σ be the sin-
gleton containing FD R : 2 → 3 (call it σ). We have
q ⊗ Σ = {R(x, y, z), Rσ

1 (y, z), R
σ
2 (y, z)}.

Let db = {R(a, c, d), R(b, c, e)}, which falsifies σ. We have
db⊗ Σ = {R(a, c, d), R(b, c, e), Rσ

1 (c, d), R
σ
1 (c, e), R

σ
2 (c, d),

Rσ
2 (c, e)}.
Clearly, every repair of db satisfies q. However, {R(a, c, d),

R(b, c, e), Rσ
1 (c, d), R

σ
2 (c, e)} is a repair of db ⊗ Σ that fal-

sifies q ⊗ Σ.

Theorem 3. Let q be an acyclic Boolean SJFCQ query.

Let Σ be a jd-singular set of KJDs and FDs. The following

statements are equivalent:

1. CERTAINTY(q,Σ) is first-order expressible.

2. The attack graph of q ⊗ Σ is acyclic.

Proof. 1 ⇒ 2 Proof by contraposition. Assume the at-
tack graph of q⊗Σ is cyclic. By [32, Lemma 7.3], the attack

graph of q ⊗ Σ contains two atoms, say F̃ and G̃, that mu-
tually attack each other. It can be easily verified that:

1. if F̃ is an S1

i -atom and G̃ a T1

j -atom, where relation
names S1

i and T1

j come from KJDs for S and T re-
spectively, then S 6= T ;

2. the attack graph of q⊗Σ contains no attacks starting

from an R̂-atom, where relation name R̂ comes from a

KJD for R, because R̂ is all-key; and

3. the attack graph of q⊗Σ contains no attacks starting
from Rσ

i -atoms, where relation name Rσ
i comes from

an FD σ ∈ Σ and i ∈ {1, 2}.

Consequently, we can assume distinct relation names S, T
and positive integers i, j such that F̃ is either an S-atom or
an S1

i -atom, and G̃ is either a T -atom or a T1

j -atom.

Let F and G be the S-atom and T -atom of q respectively.
Notice that F and F̃ agree on all primary-key positions.
Likewise, G and G̃ agree on all primary-key positions. Let τ
be a join tree for q. It can be easily seen that for every label
L on the unique path in τ between F and G, there exists
u,w ∈ L such that u 6∈ F̃+,q⊗Σ and w 6∈ G̃+,q⊗Σ.

Note incidentally that from F+,q ⊆ F̃+,q⊗Σ and G+,q ⊆
G̃+,q⊗Σ, it follows that F and G mutually attack each other
in the attack graph of q.

Let ϕ be a first-order sentence over schema(q). Build
dbyes and dbno as in the proof of [32, Theorem 5.1] with

the difference that F+,q is replaced with F̃+,q⊗Σ, and G+,q

with G̃+,q⊗Σ. It suffices to show the following:

1. dbyes |= Σ and dbno |= Σ;

2. dbyes ∈ CERTAINTY(q) and dbno 6∈ CERTAINTY(q);

3. dbyes |= ϕ ⇐⇒ dbno |= ϕ.

The proofs of the last two items are exactly as in the proof
of [32, Theorem 5.1]. We show next that dbyes |= Σ (the
proof of dbno |= Σ is analogous).

First assume Σ contains R :1 [K1, . . . ,Kℓ] where R has
signature [n, k]. Two cases can occur.

Case R = S or R = T . Assume R = S (the case
R = T is analogous). Assume that the S-atom of q is F =
S(s1, . . . , sk, sk+1, . . . , sn). We can assume h ∈ {1, . . . , ℓ}

such that that F̃ is an S1

h -atom. Notice that KVars(F) =

KVars(F̃).
Let i ∈ {1, . . . , ℓ} such that i 6= h, and let Ki = {1, . . . , k,

j1, . . . , jm} with k < j1 < · · · < jm ≤ n. Since the set

K((q ⊗ Σ) \ {F̃}) contains the FD

KVars(F) → Vars({sj1 , . . . , sjm})

and since KVars(F) ⊆ F̃+,q⊗Σ is obvious, we have

Vars({s1, . . . , sk, sj1 , . . . , sjm}) ⊆ F̃+,q⊗Σ.

The construction in the proof of [32, Theorem 5.1] will en-
sure that whenever two S-atoms of dbyes agree on all posi-
tions among {1, . . . , k}, then they agree on all positions in
Ki. That is, dbyes |= S : {1, . . . , k} → {j1, . . . , jm}.

To conclude, for each i ∈ {1, . . . , ℓ} such that i 6= h, we
have that dbyes |= S : {1, . . . , k} → Ki. By Heath’s theo-
rem, dbyes |= S :1 [K1, . . . ,Kℓ].

Case S 6= R 6= T . Since the construction in the proof
of [32, Theorem 5.1] ensures that no two R-facts of dbyes will
be key-equal, it is obvious that dbyes |= R :1 [K1, . . . ,Kℓ].

7

Next assume Σ contains FD R : i1, . . . , im → ℓ (call it
σ) where R has signature [n, k]. Assume the R-atom of q
is R(s1, . . . , sk, sk+1, . . . , sn). Let X = Vars({si1 , . . . , sim})
and Y = Vars({sℓ}). Since the query q ⊗ Σ contains the

atom Rσ
1 (si1 , . . . , sim , sℓ), we have that K((q ⊗ Σ) \ {F̃})

and K((q ⊗ Σ) \ {G̃}) both contain X → Y (recall that nei-

ther F̃ nor G̃ is an Rσ
1 -atom). Two cases can occur.

Case X ⊆ F̃+,q⊗Σ ∪ G̃+,q⊗Σ. We distinguish two sub-
cases.
Subcase X ⊆ F̃+,q⊗Σ or X ⊆ G̃+,q⊗Σ. Assume that

X ⊆ F̃+,q⊗Σ (the case X ⊆ G̃+,q⊗Σ is analogous). Then

X ∪ Y ⊆ F̃+,q⊗Σ. The construction ensures that if two R-
atoms of dbyes agree on all positions among i1, . . . , im, then
they agree on position ℓ. It follows dbyes |= σ.

Subcase X * F̃+,q⊗Σ and X * G̃+,q⊗Σ. We can as-
sume indices g, h ∈ {i1, . . . , im} such that sg, sh ∈ X, sg ∈

F̃+,q⊗Σ \ G̃+,q⊗Σ and sh ∈ G̃+,q⊗Σ \ F̃+,q⊗Σ. The construc-
tion ensures that no two R-atoms of dbyes agree on both
positions g and h. It follows dbyes |= σ.

Case X * F̃+,q⊗Σ ∪ G̃+,q⊗Σ. We can assume the ex-
istence of g ∈ {i1, . . . , im} such that sg ∈ X and sg 6∈

F̃+,q⊗Σ ∪ G̃+,q⊗Σ. The construction ensures that no two
R-atoms of dbyes agree on position g. It follows dbyes |= σ.

2 ⇒ 1 Assume the attack graph of q ⊗ Σ is acyclic. By
Theorem 2, CERTAINTY(q ⊗ Σ) is first-order expressible.
We can assume a first-order formula ψ such that for every
uncertain database d̃b over schema(q ⊗ Σ), we have that ψ

evaluates to true on d̃b if and only if every repair of d̃b
satisfies q ⊗ Σ.
For every uncertain database db over schema(q), it is the

case that db⊗Σ is a uncertain database over schema(q ⊗ Σ).
It is correct to conclude that for every uncertain database
db over schema(q), we have that ψ evaluates to true on
db⊗Σ if and only if every repair of db⊗Σ satisfies q ⊗Σ.
By Lemma 1, db ⊗ Σ is first-order computable from db.

Consequently, there exists a first-order formula ψ̃ such that
for every uncertain database db over schema(q), we have

that ψ̃ evaluates to true on db if and only if every repair
of db⊗ Σ satisfies q ⊗ Σ. In particular, for every uncertain
database db that satisfies Σ, the following are equivalent:

1. ψ̃ evaluates to true on db.

2. Every repair of db⊗ Σ satisfies q ⊗ Σ.

Then, by Lemma 3, for every uncertain database db that
satisfies Σ, the following are equivalent:

1. ψ̃ evaluates to true on db.

2. Every repair of db satisfies q.

Hence CERTAINTY(q,Σ) is first-order expressible.

Importantly, it happens that the attack graph of q is
cyclic, and the attack graph of q ⊗ Σ is acyclic. Thus, by
Theorems 2 and 3, there are cases where CERTAINTY(q,Σ)
is first-order expressible, but CERTAINTY(q) is not. We il-
lustrate this by two examples.

Example 11. Figure 3 shows the cyclic attack graph of q1.
Figure 5 (right) shows the acyclic attack graph of q1 ⊗{σ1}
where σ1 = R : 5 → 6. From Theorems 2 and 3, it follows
that CERTAINTY(q1) is not first-order expressible, but that
CERTAINTY(q1, {σ1}) is first-order expressible.

Example 12. Consider again the query q3 = {R(x, y, z),
S(y, u, x, z)} introduced in Example 8. The attack graph of
q3 (not shown) is cyclic. Figure 4 (right) shows the attack
graph of q3 ⊗ Σ3 with Σ3 = {R :1 [{1, 2}, {1, 3}], S : 3, 4 →
1}. The latter attack graph is acyclic.

Incidentally, one can easily verify that if we delete the
KJD and/or the FD from Σ3, then the attack graph remains
cyclic. That is, both the KJD and the FD are needed to
attain an acyclic attack graph.

The proof of Theorem 1 can now be given.

Proof of Theorem 1. Theorem 3 tells us that the prob-
lem CERTAINTY(q,Σ) is first-order expressible if and only
if the attack graph of q ⊗ Σ is acyclic. Acyclicity of at-
tack graphs can be tested in quadratic time [32]. Further-
more, the proof of Theorem 3 is constructive, meaning that
it constructs a first-order definition of CERTAINTY(q,Σ) if
it exists.

6. CONSTRUCTING FIRSTORDER DEFI

NITIONS
Assume CERTAINTY(q,Σ) is first-order expressible. The

proof of Theorem 3 implies that a first-order definition of
CERTAINTY(q,Σ) can be constructed in two steps: first,
construct a first-order definition ψ of CERTAINTY(q ⊗ Σ),
and then substitute away from ψ all atoms with spurious
relation names. In this section, we show a more efficient
approach.

6.1 Attack Graph of (q,Σ)

The following definition extends the notion of attack graph
to deal with the presence of KJDs and FDs.

Definition 6. Let q be an acyclic Boolean SJFCQ query.
Let Σ be a jd-singular set of KJDs and FDs. The attack

graph of (q,Σ) is a directed graph whose vertices are the
atoms of q. If the attack graph of q ⊗ Σ contains an attack

F
q⊗Σ
 G where F is an R-atom or an R1

i -atom, and G is
an S-atom or an S1

j -atom, then the attack graph of (q,Σ)
contains a directed edge from the R-atom of q to the S-atom
of q.

Example 13. From the attack graph of q3⊗Σ3 in Figure 4
(right), one finds that the attack graph of (q3,Σ3) consists
of a single directed edge from S(y, u, x, z) to R(x, y, z).

Clearly, if Σ = ∅, then the attack graph of (q,Σ) is the
same graph as the attack graph of q. The following lemma
states that the attack graphs of q ⊗ Σ and (q,Σ) are either
both cyclic or both acyclic.

Lemma 4. Let q be an acyclic Boolean SJFCQ query. Let

Σ be a jd-singular set of KJDs and FDs. The following are

equivalent:

1. The attack graph of (q,Σ) is acyclic.

2. The attack graph of q ⊗ Σ is acyclic.

6.2 Free Variables
So far, we have assumed that all queries are Boolean.

In the construction of first-order definitions, we will have
to treat queries with free variables. In the following, the

8

R(u, v, w, x, y, z) S(y, z, ‘∗ ∗ ∗’)

Rσ1

1 (y, z) Rσ1

2 (y, z)

{y, z} {y, z}

{y, z} R(u, v, w, x, y, z) S(y, z, ‘∗ ∗ ∗’)

Rσ1

1 (y, z) Rσ1

2 (y, z)

Figure 5: Join tree (left) and attack graph (right) of query q1 ⊗ {σ1} with σ1 = R : 5 → 6.

notation q(~u), where ~u is a sequence of distinct variables,
indicates that the variables in ~u are free in the query q.
The problem of certain query answering naturally extends
to queries with free variables, as follows.

Definition 7. Let q(~u) be a conjunctive query with free
variables ~u. Let Σ be a set of first-order constraints. The
function problem CERTAINTY(q(~u),Σ) takes on input an
uncertain database db that satisfies Σ, and asks to return all
certain answers to q on db, i.e., all sequences ~a of constants
(of the same length as ~u) such that q(~a) is true in every
repair of db.
A first-order definition of CERTAINTY(q(~u),Σ) is a first-

order formula ϕ(~u) such that for every sequence ~a of con-
stants (of the same length as ~u), for every uncertain database
db that satisfies Σ, the following are equivalent:

1. Every repair of db satisfies q(~a).

2. db |= ϕ(~a).

We explain that the addition of free variables is not funda-
mental. Assume we are asked to determine a first-order defi-
nition of CERTAINTY(q(~u),Σ) where ~u = 〈u1, . . . , um〉. Let
c1, . . . , cm be distinct constants not occurring in q, and let
~c = 〈c1, . . . , cm〉. Let q~u7→~c be the query obtained from q by
replacing each occurrence of ui with ci, for i ∈ {1, . . . ,m}.
Let ϕ be a first-order definition of CERTAINTY(q~u7→~c,Σ).
Clearly, the query q~u 7→~c is Boolean. Since first-order defi-
nitions treat all constants in a generic fashion, a first-order
definition of CERTAINTY(q(~u),Σ) is obtained from ϕ by re-
placing each ci with ui. This is tantamount to saying that
free variables are treated as constants. Likewise, in the com-
putation of join trees and attack graphs, free variables are
to be treated as constants.

6.3 The Rewrite Function
We introduce a function Rewrite that returns consistent

first-order rewritings. We provide an intuitive example be-
fore giving the technical definition.

Example 14. Let q = ∃x∃yR(x, a, x, y, y), where a is a
constant. Obviously, q is true in every repair of an uncertain
database db if and only if db contains an R-fact of the form
R(x, a, x, y, y) and for all z1, z2, z3, z4, if the key-equal R-
fact R(x, z1, z2, z3, z4) belongs to db, then it is the case that
z1 = a, z2 = x, and z3 = z4.
Notice that we can rename z3 into y in the previous sen-

tence, which results in the condition: for all z1, z2, y, z4, if
the key-equal R-fact R(x, z1, z2, y, z4) belongs to db, then
it is the case that z1 = a, z2 = x, and y = z4.

R(u, v, w, x, y, z) S(y, z, ‘∗ ∗ ∗’)

Figure 6: The attack graph of (q1, {R : 5 → 6}).

Thus, q is true in every repair of an uncertain database db
if and only if db satisfies the following first-order sentence.

∃x∃y
(
R(x, a, x, y, y)∧

∀z1∀z2∀y∀z4
(
R(x, z1, z2, y, z4) →

z1 = a

∧z2 = x
∧y = z4

))

Definition 8. Let q(~u) be an acyclic SJFCQ query. Let Σ
be a jd-singular set of KJDs and FDs such that the attack
graph of (q(~u),Σ) is acyclic. We define Rewrite(q(~u),Σ) re-
cursively as follows.

Case q = ∅ (hence Σ = ∅). Then Rewrite(q,Σ) = true.

Case q 6= ∅. Choose an atom F = R(~x, y1, . . . , ym) that
is unattacked in the attack graph of (q,Σ). Let z1, . . . , zm
be distinct variables and let C be a conjunction of equalities
constructed as follows. For i ∈ {1, . . . ,m},

• if yi is a variable that does not occur in ~u nor in
〈~x, y1, . . . , yi−1〉, then zi is the same variable as yi;

• otherwise zi is a new variable and C contains zi = yi.
Notice that this case applies if yi is a constant, if yi is
a (free) variable in ~u, or if yi is a variable occurring in
〈~x, y1, . . . , yi−1〉.

Let ~v be a sequence of variables that contains exactly once
each variable that occurs in 〈~x, y1, . . . , ym〉 and that does
not occur in ~u. Then

Rewrite(q(~u),Σ) = ∃~v
(
R(~x, y1, . . . , ym)∧

∀z1 · · · ∀zm
(
R(~x, z1, . . . , zm) →

C ∧ Rewrite(q′(~u,~v),Σ′)
))
.

Here, q′ = q \ {R(~x, y1, . . . , ym)} and Σ′ is the restriction
of Σ to the KJDs and FDs that do not involve the rela-
tion name R. Notice that the variables of ~u remain free in
Rewrite(q(~u),Σ).

Notice that from [32, Lemmas C.1 and C.2] and Lemma 4,
it follows that the attack graph of (q′(~u,~v),Σ′) is acyclic and
hence the recursive call Rewrite(q′(~u,~v),Σ′) is well defined.

Theorem 4. Let q(~u) and Σ be as in Definition 8. If

CERTAINTY(q(~u),Σ) is first-order expressible, then a first-

order definition of it is given by Rewrite(q(~u),Σ).

9

R First Last Birth Sal City Country

Ed Smith 1960 50K Mons Belgium
An Allen 1970 40K Mons France

S City Country Stars

Mons Belgium ∗ ∗ ∗
Mons France ∗ ∗ ∗

Figure 7: Uncertain database falsifying R : City → Country.

SELECT R.SAL FROM R, S
WHERE R.CITY = S.CITY
AND R.COUNTRY = S.COUNTRY
AND S.STARS = ’***’

Figure 8: Original SQL query in the experiment,
asking for salaries of employees who live in three-
star cities.

Example 15. We can now explain all technical details be-
hind Example 1 introduced in Section 1. Figure 3 shows
the attack graph of q1. Since the attack graph is cyclic,
we conclude (by Theorem 2) that CERTAINTY(q1) is not
first-order expressible. Figure 5 shows the join tree (left)
and the attack graph (right) of q1 ⊗ {R : 5 → 6}. Since the
attack graph is acyclic, we conclude (by Theorem 3) that
CERTAINTY(q1, {R : 5 → 6}) is first-order expressible.
The attack graph of (q1, {R : 5 → 6}) is shown in Figure 6.

Based on this attack graph, Rewrite(q1, {R : 5 → 6}) yields
the following first-order sentence.

ϕ1=∃u∃v∃w∃x∃y∃z

(
R(u, v, w, x, y, z)∧

∀w∀x∀y∀z
(
R(u, v, w, x, y, z) →

(
S(y, z, ‘∗ ∗ ∗’)∧

∀z1∀z2(S(y, z1, z2) → z1 = z ∧ z2 = ‘∗ ∗ ∗’)
)))

By Theorem 4, the sentence ϕ1 is a first-order definition
of CERTAINTY(q1, {R : 5 → 6}). Thus, for every uncertain
database db that satisfies R : 5 → 6, it is the case that ϕ1

evaluates to true on db if and only if q1 evaluates to true
on every repair of db.
Unsurprisingly, ϕ1 does not provide certain answers on

uncertain databases that falsify R : 5 → 6. For example,
ϕ1 evaluates to false on the uncertain database of Figure 7,
even though all repairs of this database satisfy q1.

It is fairly straightforward to translate a first-order defi-
nition of CERTAINTY(q,Σ) into SQL. The performance of
such SQL queries has been studied in [12] and will be further
discussed in the next section.

7. EXPERIMENTAL EVIDENCE
ConQuer [14] and EQUIP [18] are two systems for solving

the problem CERTAINTY(q(~u)) where q(~u) is a conjunctive
query. ConQuer applies only to conjunctive queries q(~u) for
which CERTAINTY(q(~u)) is first-order expressible. ConQuer
rewrites such a query q(~u) into a new SQL query Q that
yields the certain answers on any uncertain database. The
query Q can then be executed in any commercial DBMS.
Notice that Q does not depend on the data.
EQUIP applies to all conjunctive queries q(~u). When an

uncertain database db is given as the input of the problem
CERTAINTY(q(~u)), EQUIP transforms the database and the
query into a Binary Integer Program (BIP) that computes
the certain answers. The BIP can then be executed by any

SELECT R1.SAL FROM R AS R1
WHERE NOT EXISTS (

SELECT * FROM R AS R2
WHERE R2.FIRST = R1.FIRST
AND R2.LAST = R1.LAST
AND (R2.SAL <> R1.SAL
OR NOT EXISTS (

SELECT * FROM S AS S1
WHERE S1.CITY = R2.CITY
AND S1.COUNTRY = R2.COUNTRY
AND S1.STARS = ’***’
AND NOT EXISTS (

SELECT * FROM S AS S2
WHERE S2.CITY = S1.CITY
AND (S2.COUNTRY <> S1.COUNTRY
OR S2.STARS <> ’***’)))))

Figure 9: Consistent first-order SQL rewriting.

existing BIP solver. Since the BIP depends on the database
db, a new BIP has to be generated whenever the database
changes.

No benchmark experiments exist for comparing the per-
formance of different systems. Devising a representative
benchmark is arduous because of the many factors that can
impact the performance. It is not even clear how to ade-
quately characterize the degree of inconsistency of an un-
certain database. Call a block a maximal set of key-equal
facts. Is it important to take into account the distribution
of the cardinalities of blocks, or is it sufficient to know the
percentage of tuples involved in some conflict?

Nevertheless, extensive experiments [18, 24] show that if
CERTAINTY(q(~u)) is first-order expressible, then encoding
the problem in SQL (like in ConQuer) is always preferable
to binary integer programming. This is not surprising, be-
cause binary integer programming is NP-hard, while the
data complexity of “first-order” SQL is AC0. A main con-
clusion of [24] is that consistent first-order rewriting should

be used whenever possible. In this respect, Theorem 1 is
of much practical importance, because it reveals when ex-
actly consistent first-order rewriting is possible, i.e., when
the problem can be solved in SQL. Unlike ConQuer, our
approach takes into account knowledge about satisfied con-
straints.

To further illustrate the practicality of our approach, we
ran an experiment for the following non-Boolean query q4,
which asks for salaries of employees who live in three-star
cities; its SQL encoding is shown in Figure 8. This non-
Boolean variant of the Boolean query q1 was chosen in order
to get more output than a single Boolean value.

q4(x) = ∃u∃v∃w∃y∃z
(
R(u, v, w, x, y, z) ∧ S(y, z, ‘∗ ∗ ∗’)

)

It is coNP-complete to decide, given an uncertain database
db and a salary c on input, whether c is a certain answer
to q4 on db [17]. Therefore, any known algorithm (be it
EQUIP or another) which computes all certain answers will
be exponential-time in the size of the input database. An

10

obvious (but impractical) approach is to execute the query
of Figure 8 on every repair and take the intersection of all
answers.
Let us now assume that the input databases are known

to satisfy the functional dependency R : City → Country
(call it σ1). Using the results in this paper, it can be verified
that CERTAINTY(q4(x), {σ1}) is first-order expressible, and
is solved by executing the SQL query of Figure 9.
In our experiment, we have assumed a fixed relation S of

1000 tuples such that in the City-column, 100 cities appear
twice and 800 cities appear exactly once. These figures are
not unrealistic if we consider that touristic appreciations
are volatile. Obviously, the relation S has an astronomical
number (2100) of repairs. We have used different databases
where the cardinality of the relation R varies from 500,000 to
1,500,000, and contains one duplicate primary key for every
1000 tuples. The relation R always satisfies R : City →
Country.
Table 1 shows query execution times in this experiment.

All experiments were conducted using PostgreSQL version
9.1.6 on a machine with Intel core i5 2.4GHz CPU and 2GB
RAM, running Gentoo Linux. The second column lists the
execution time (denoted trew) of the rewritten query (see
Figure 9) on the original inconsistent database. The third
column shows an optimistic estimate of the execution time
(denoted to) of the original query (see Figure 8) on any re-
pair. Since it was verified that execution times do not signif-
icantly differ from one repair to another, we have measured
the execution time on 100 arbitrarily picked repairs and re-
port the minimum. Obviously, executing the original query
(of Figure 8) on each repair is infeasible.
The rightmost column in Table 1 indicates that the ratio

trew/to is constantly less than 8. That is, in this experiment,
executing the consistent first-order SQL rewriting on the
original inconsistent database is less than eight times slower
than executing the original query on a single repair . Thus,
in the extreme case where the original uncertain database
had only one single repair (i.e., if it were consistent), our pro-
posed technique would only result in a factor 8 slow-down.
Note, however, that under the (not unrealistic) assumption
of a fixed percentage of duplicates (1h in our experiment),
the number of repairs grows exponentially in the size of the
database, whereas our technique is not affected by the pres-
ence of such duplicates.
The ease and efficiency of consistent first-order SQL rewrit-

ing do not incite to further “manual” optimization in addi-
tion to the automated optimization already performed by
the DBMS optimizer. Such manual optimization could pos-
sibly come from a separate treatment of the consistent part
of the database, or even from some normalization that de-
composes the database schema into consistent and inconsis-
tent relations. Such optimizations have not yet been inves-
tigated in theory and risk to incur significant overhead in
practice.
To conclude, no previously known technique is capable

of recognizing that the problem in our experiment can be
solved by a single SQL query. ConQuer cannot handle the
problem. EQUIP uses an exponential-time algorithm and
incurs significant data preprocessing [18]. Our consistent
first-order SQL rewriting is in the low complexity class AC0

and is insensitive to database updates.

|R| trew to trew/to
500,000 953 133 7.12
600,000 1,156 160 7.21
700,000 1,356 183 7.38
800,000 1,606 212 7.56
900,000 1,767 238 7.40

1,000,000 1,965 265 7.40
1,100,000 2,219 295 7.50
1,200,000 2,341 319 7.32
1,300,000 2,532 346 7.31
1,400,000 2,699 367 7.33
1,500,000 2,980 396 7.51

Table 1: Execution times (in milliseconds) on un-
certain databases of growing size. The relation S
is fixed. trew is the execution time of the consistent
first-order SQL rewriting on the uncertain database.
to is the minimum of the execution times of the orig-
inal query on 100 arbitrarily picked repairs.

8. CONCLUSION
The problem of consistent query answering under primary

keys, also known as CERTAINTY(q), has attracted much
research attention in recent years. This problem takes as
its input an uncertain database db and asks whether the
Boolean query q evaluates to true on every repair of db.
In practical situations, however, one may know that in-
put databases satisfy some set Σ of constraints, i.e., that
the input databases are partially consistent. The problem
CERTAINTY(q,Σ) takes as its input an uncertain database
db that satisfies Σ and asks whether the query q evaluates
to true on every repair of db. The knowledge that some con-
straints be satisfied brings a new flavor of practical interest
to consistent query answering.

We studied the problem CERTAINTY(q,Σ) in case q is
an acyclic Boolean SJFCQ query and Σ is a set of FDs and
KJDs, containing at most one KJD per relation name. The
main result is that it is decidable whether CERTAINTY(q,Σ)
is first-order expressible. If CERTAINTY(q,Σ) is first-order
expressible, then it can be solved by a single SQL query.

9. REFERENCES

[1] S. Abiteboul, R. Hull, and V. Vianu. Foundations of

Databases. Addison-Wesley, 1995.

[2] F. N. Afrati and P. G. Kolaitis. Repair checking in
inconsistent databases: algorithms and complexity. In
R. Fagin, editor, ICDT, volume 361 of ACM
International Conference Proceeding Series, pages
31–41. ACM, 2009.

[3] M. Arenas, L. E. Bertossi, and J. Chomicki.
Consistent query answers in inconsistent databases. In
PODS, pages 68–79. ACM Press, 1999.

[4] C. Beeri, R. Fagin, D. Maier, and M. Yannakakis. On
the desirability of acyclic database schemes. J. ACM,
30(3):479–513, 1983.

[5] L. E. Bertossi. Database Repairing and Consistent

Query Answering. Synthesis Lectures on Data
Management. Morgan & Claypool Publishers, 2011.

[6] L. E. Bertossi, L. Bravo, E. Franconi, and
A. Lopatenko. The complexity and approximation of
fixing numerical attributes in databases under
integrity constraints. Inf. Syst., 33(4-5):407–434, 2008.

11

[7] P. Bohannon, M. Flaster, W. Fan, and R. Rastogi. A
cost-based model and effective heuristic for repairing
constraints by value modification. In Özcan [23], pages
143–154.

[8] L. Bravo and L. E. Bertossi. Consistent query
answering under inclusion dependencies. In
H. Lutfiyya, J. Singer, and D. A. Stewart, editors,
CASCON, pages 202–216. IBM, 2004.

[9] J. Chomicki and J. Marcinkowski. Minimal-change
integrity maintenance using tuple deletions. Inf.
Comput., 197(1-2):90–121, 2005.

[10] N. N. Dalvi, C. Ré, and D. Suciu. Probabilistic
databases: diamonds in the dirt. Commun. ACM,
52(7):86–94, 2009.

[11] N. N. Dalvi, C. Re, and D. Suciu. Queries and
materialized views on probabilistic databases. J.
Comput. Syst. Sci., 77(3):473–490, 2011.

[12] A. Decan, F. Pijcke, and J. Wijsen. Certain
conjunctive query answering in SQL. In
E. Hüllermeier, S. Link, T. Fober, and B. Seeger,
editors, SUM, volume 7520 of Lecture Notes in

Computer Science, pages 154–167. Springer, 2012.

[13] S. Flesca, F. Furfaro, and F. Parisi. Querying and
repairing inconsistent numerical databases. ACM
Trans. Database Syst., 35(2), 2010.

[14] A. Fuxman, E. Fazli, and R. J. Miller. ConQuer:
Efficient management of inconsistent databases. In
Özcan [23], pages 155–166.

[15] A. Fuxman and R. J. Miller. First-order query
rewriting for inconsistent databases. In T. Eiter and
L. Libkin, editors, ICDT, volume 3363 of Lecture
Notes in Computer Science, pages 337–351. Springer,
2005.

[16] A. Fuxman and R. J. Miller. First-order query
rewriting for inconsistent databases. J. Comput. Syst.

Sci., 73(4):610–635, 2007.

[17] P. G. Kolaitis and E. Pema. A dichotomy in the
complexity of consistent query answering for queries
with two atoms. Inf. Process. Lett., 112(3):77–85,
2012.

[18] P. G. Kolaitis, E. Pema, and W.-C. Tan. Efficient
querying of inconsistent databases with binary integer
programming. PVLDB, 6(6):397–408, 2013.

[19] P. Koutris and D. Suciu. A dichotomy on the
complexity of consistent query answering for atoms
with simple keys. CoRR, abs/1212.6636, 2012.

[20] A. Lopatenko and L. E. Bertossi. Complexity of
consistent query answering in databases under

cardinality-based and incremental repair semantics. In
T. Schwentick and D. Suciu, editors, ICDT, volume
4353 of Lecture Notes in Computer Science, pages
179–193. Springer, 2007.

[21] D. Maslowski and J. Wijsen. A dichotomy in the
complexity of counting database repairs. J. Comput.

Syst. Sci., 79(6):958–983, 2013.

[22] C. Molinaro and S. Greco. Polynomial time queries
over inconsistent databases with functional
dependencies and foreign keys. Data Knowl. Eng.,
69(7):709–722, 2010.

[23] F. Özcan, editor. Proceedings of the ACM SIGMOD

International Conference on Management of Data,
Baltimore, Maryland, USA, June 14-16, 2005. ACM,
2005.

[24] E. Pema. Consistent Query Answering of Conjunctive

Queries under Primary Key Constraints. PhD thesis,
University of California Santa Cruz, 2013.

[25] B. ten Cate, G. Fontaine, and P. G. Kolaitis. On the
data complexity of consistent query answering. In
A. Deutsch, editor, ICDT, pages 22–33. ACM, 2012.

[26] J. D. Ullman. Principles of Database and

Knowledge-Base Systems, Volume I. Computer
Science Press, 1988.

[27] J. Wijsen. Database repairing using updates. ACM
Trans. Database Syst., 30(3):722–768, 2005.

[28] J. Wijsen. Project-join-repair: An approach to
consistent query answering under functional
dependencies. In H. L. Larsen, G. Pasi, D. O. Arroyo,
T. Andreasen, and H. Christiansen, editors, FQAS,
volume 4027 of Lecture Notes in Computer Science,
pages 1–12. Springer, 2006.

[29] J. Wijsen. On the consistent rewriting of conjunctive
queries under primary key constraints. Inf. Syst.,
34(7):578–601, 2009.

[30] J. Wijsen. On the first-order expressibility of
computing certain answers to conjunctive queries over
uncertain databases. In J. Paredaens and D. V.
Gucht, editors, PODS, pages 179–190. ACM, 2010.

[31] J. Wijsen. A remark on the complexity of consistent
conjunctive query answering under primary key
violations. Inf. Process. Lett., 110(21):950–955, 2010.

[32] J. Wijsen. Certain conjunctive query answering in
first-order logic. ACM Trans. Database Syst., 37(2):9,
2012.

[33] J. Wijsen. Charting the tractability frontier of certain
conjunctive query answering. In R. Hull and W. Fan,
editors, PODS, pages 189–200. ACM, 2013.

12

APPENDIX

A. PROOF OF LEMMA2

Proof. Assume q is an acyclic Boolean SJFCQ query.
Let τ be a join tree for q. A join tree τ ′ for q⊗Σ is obtained
as follows. For every relation name R in q,

• all atoms with relation names of the form R1

i , R
σ
1 , or

Rσ
2 are made adjacent to the R-atom in τ ; and

• if Σ contains a KJD for R, then the R-atom of τ is

replaced with the R̂-atom of q ⊗ Σ.

It is easy to see that τ ′ is a join tree. Notice that the moti-

vation for introducing R̂-atoms is exactly to guarantee the
existence of a join tree.

B. PROOF OF LEMMA3

Proof. For every uncertain database db over schema(q),
let [[db⊗ Σ]] be the smallest subset of db ⊗ Σ such that
[[db⊗ Σ]] contains all facts with spurious relation names of

the form R̂ or Rσ
i , where R ∈ schema(q), σ ∈ Σ2, and i ∈

{1, 2}.
Let f be the function with domain rset(db) mapping each

repair r of db to f(r) := (r⊗ Σ)∪ [[db⊗ Σ]]. We show that
for every uncertain database db over schema(q) such that
db |= Σ,

rset(db⊗ Σ) = {f(r) | r ∈ rset(db)} (1)

⊇ Let r be a repair of db with db |= Σ. We need to

show that f(r) is a repair of db ⊗ Σ. Since relation names

of the form R̂ are all-key and since db |= Σ2, it follows that
[[db⊗ Σ]] is consistent. Consequently, it suffices to show that
f(r)\ [[db⊗ Σ]] is a maximal consistent subset of (db⊗ Σ)\
[[db⊗ Σ]]. The set f(r) \ [[db⊗ Σ]] = (r⊗ Σ) \ [[db⊗ Σ]]
contains two types of relation names.

Relation names R ∈ schema(q) ∩ schema(q ⊗ Σ). Then, Σ1

contains no KJD for R. Then db and db⊗ Σ contain
the same set of R-facts. Likewise, for every repair r of
db, we have that r and r ⊗ Σ contain the same set of
R-facts. Clearly, the set of R-facts in r⊗ Σ is a repair
of the set of R-facts in db⊗ Σ.

Relation names R1

i ∈ schema(q ⊗ Σ) with R ∈ schema(q).
Assume R has signature [n, k]. We can assume a KJD 1

[K1, . . . ,Kℓ] in Σ1 such thatKi = {1, . . . , k, j1, . . . , jm}
with k < j1 < · · · < jm ≤ n. Assume db⊗ Σ contains
R1

i (a1, . . . , ak, b1, . . . , bm). Then, db contains some fact
F = R(a1, . . . , ak, ak+1, . . . , an) such that for each i ∈
{1, . . . ,m}, we have aji = bi. Since r contains ex-
actly one R-fact that is key-equal to F , it follows that
r ⊗ Σ contains exactly one R1

i -fact that is key-equal
to R1

i (a1, . . . , ak, b1, . . . , bm). Consequently, the set of
R1

i -facts in r ⊗ Σ is a repair of the set of R1

i -facts in
db⊗ Σ.

We conclude that f(r) is a repair of db⊗ Σ.

⊆ Let r′ be a repair of db ⊗ Σ with db |= Σ. We

specify the construction of a (unique) repair r of db such
that r′ = f(r). For every relation name R ∈ schema(q) we
proceed as follows. If Σ1 contains no KJD for R, then we

include in r all R-facts of r′. Assume next that Σ1 contains
a KJD R :1 [K1, . . . ,Kℓ] (call it σ), where the signature
of R is [n, k]. Since db |= σ, it is the case that for every
i ∈ {1, . . . , ℓ}, for every R1

i -fact Ai of r′, there exists a
(unique) R-fact A in db such that Ai ∈ {A}⊗ {σ} ⊆ r′; we
include every such A in r. Note that {A} ⊗ {σ} contains a
number ℓ of distinct facts that agree on positions {1, . . . , k}
and whose join is A. Since Σ is jd-singular, the set r so
constructed is consistent. It is now obvious that r is a repair
of db such that r′ = f(r). This concludes the proof of (1).

To conlcude the proof, it suffices to note the following easy
equivalences for every r ∈ rset(db):

r |= q ⇐⇒ r⊗ Σ |= q ⊗ Σ

r⊗ Σ |= q ⊗ Σ ⇐⇒ f(r) |= q ⊗ Σ

C. PROOF OF LEMMA 4

Proof. 1 =⇒ 2 Proof by contraposition. Assume that
the attack graph of q⊗Σ is cyclic. By [32, Lemma 7.3], the
attack graph of q ⊗ Σ must contain a cycle of size 2. So we

can assume two atoms F,G such that F
q⊗Σ
 G

q⊗Σ
 F . For

every FD σ defined on R, the corresponding atoms Rσ
1 (~x, ~y)

and Rσ
2 (~x, ~y) contain no outgoing attacks. We can assume

without loss of generality that for some R ∈ schema(q), it
is the case that F is an R-atom or an R1

i -atom. Since no
R1

i -atom attacks an R1

j -atom, it must be the case that G is
an S-atom or an S1

k -atom for some S 6= R (S ∈ schema(q)).
Then the attack graph of (q,Σ) contains a cycle involving
the R-atom and S-atom of q.

2 =⇒ 1 Assume the attack graph of q⊗Σ is acyclic. By
Lemma A.2 in [32], the attack graph of q ⊗ Σ is transitive.
Assume towards a contradiction that the attack graph of
(q,Σ) contains a directed cycle. Then it must be the case
that the attack graph of q⊗Σ contains an elementary path
from some R1

i -atom (call it F̃) to some R1

j -atom (call it G̃)
where R ∈ schema(q) and i 6= j. Since the attack graph of

q ⊗Σ is transitive, it follows F̃
q⊗Σ
 G̃. This contradicts the

obvious observation that the attack graph of q⊗Σ contains
no directed edge from an R1

i -atom to some R1

j -atom.

D. PROOF OF THEOREM 4
The following helping lemma is technical. It states that if

R(~x, ~y) is unattacked in the attack graph of (q,Σ) and if Σ
contains a KJD R :1 [K1, . . . ,Kℓ], then in the attack graph
of q ⊗ Σ,

1. each R1

i -atom is unattacked (1 ≤ i ≤ ℓ);

2. the R̂-atom can only be attacked by some R1

i -atom;
and

3. if σ is an FD of Σ, then the Rσ
1 -atom and the Rσ

2 -atom
can only be attacked by some R1

i -atom.

Lemma 5. Let q be an acyclic Boolean SJFCQ query. Let

Σ be a jd-singular set of KJDs and FDs. Assume that Σ
contains a KJD R :1 [K1, . . . ,Kℓ]. Let F be the R-atom of

q. Let F̂ be the R̂-atom of q ⊗ Σ, and for i ∈ {1, . . . , ℓ}, let
Fi be the R1

i -atom of q⊗Σ. If F is unattacked in the attack

graph of (q,Σ), then

13

1. F1, . . . , Fℓ are unattacked in the attack graph of q ⊗Σ;

2. for every atom G ∈ q ⊗ Σ, if G
q⊗Σ
 F̂ , then G ∈

{F1, . . . , Fℓ}; and

3. if q⊗Σ contains an atom H with relation name Rσ
i for

some FD σ ∈ Σ, then for each G ∈ q ⊗ Σ, if G
q⊗Σ
 H,

then G ∈ {F1, . . . , Fℓ}.

Proof. Assume F is unattacked in the attack graph of
(q,Σ).

1 Assume towards a contradiction that for some atom

G ∈ q ⊗ Σ, we have G
q⊗Σ
 Fi (i ∈ {1, . . . , ℓ}). Then F is

attacked in the attack graph of (q,Σ), a contradiction.

2 Assume towards a contradiction that for some G ∈

(q ⊗ Σ) \ {F1, . . . , Fℓ}, we have G
q⊗Σ
 F̂ . Let τ be a join

tree for q ⊗ Σ. We can assume without loss of generality

that for all i ∈ {1, . . . , ℓ}, F̂ and Fi are adjacent in τ .

Since G
q⊗Σ
 F̂ , we can assume a variable x ∈ Vars(F̂) such

that x 6∈ G+,q⊗Σ. Since there exists i ∈ {1, . . . , ℓ} such that

x ∈ Vars(F̂) ∩ Vars(Fi), it follows G
q⊗Σ
 Fi, contradicting

property 1 shown above.

3 Let H be an atom of q ⊗ Σ with relation name Rσ
i .

Let τ be a join tree for q ⊗ Σ. We can assume without

loss of generality that F̂ and H are adjacent in τ . Assume

G ∈ q ⊗ Σ such that G
q⊗Σ
 H. Obviously, G 6= F̂ . Then, F̂

is on the path in τ between G and H. It follows G
q⊗Σ
 F̂ .

By property 2 shown above, G ∈ {F1, . . . , Fℓ}.

The proof of Theorem 4 can now be given.

Proof. Assume CERTAINTY(q(~u),Σ) is first-order ex-
pressible. By Theorem 3, the attack graph of q(~u) ⊗ Σ
is acyclic. By Lemma 4, the attack graph of (q(~u),Σ) is
acyclic. Consequently, the function Rewrite of Definition 8
applies to (q(~u),Σ) and to (q(~u)⊗ Σ, ∅). Let

ϕ(~u) = Rewrite(q(~u),Σ)

ψ(~u) = Rewrite(q(~u)⊗ Σ, ∅)

It is known [32] that the formula ψ(~u) is a first-order defi-
nition of CERTAINTY(q(~u)⊗ Σ). By Lemma 3, it suffices
to show that for every uncertain database db such that
db |= Σ, for every sequence ~a of constants (where ~a has
same length as ~u),

db |= ϕ(~a) ⇐⇒ db⊗ Σ |= ψ(~a).

The proof runs by induction on the number of atoms in
q. The result is obvious if q = ∅. For the induction step,
assume q 6= ∅.
Assume that the attack graph of (q(~u),Σ) contains an

unattacked atom R(~x, y1, . . . , ym), as in Definition 8. In
the proof, we will assume that Σ contains a KJD R :1
[K1, . . . ,Kℓ] (call it σ) for R. This assumption is without
loss of generality, because if Σ contained no KJD for R, we
can always add a trivial KJD R :1 [{1, . . . , n}] where n is
the arity of R. We have

ϕ(~u) = ∃~v
(
R(~x, y1, . . . , ym)∧

∀z1 · · · ∀zm
(
R(~x, z1, . . . , zm) →

C ∧ ϕ′(~u,~v)
))
,

(2)

where

• ~v, z1, . . . , zm, C are as Definition 8; and

• ϕ′(~u,~v) = Rewrite(q′(~u,~v),Σ′) where q′ is defined by
q′ = q \ {R(~x, y1, . . . , ym)} and Σ′ restricts Σ to the
dependencies not involving relation name R.

By Lemma 5, no R1

i -atom (1 ≤ i ≤ ℓ) is attacked in the
attack graph of q ⊗ Σ. Let

ψ̃(~u) = ∃~v
(
R1

1 (~x, ~y1) ∧ · · · ∧R1

ℓ (~x, ~yℓ)∧

∀z1 · · · ∀zm
(
R1

1 (~x, ~z1) ∧ · · · ∧R1

ℓ (~x, ~zℓ) →

C ∧ ψ′(~u,~v)
))
,

(3)

where

• {R1

i (~x, ~yi)}
ℓ
i=1 = {R(~x, y1, . . . , ym)} ⊗ {σ};

• {R1

i (~x, ~zi)}
ℓ
i=1 = {R(~x, z1, . . . , zm)} ⊗ {σ}; and

• ψ′(~u,~v) = Rewrite(q′(~u,~v)⊗ Σ′, ∅).

It is not hard to convince oneself (see also Example 16 and
syntactic simplifications introduced in [12]) that for every
uncertain database db such that db |= Σ, for every sequence
~a of constants (where ~a has same length as ~u),

db⊗ Σ |= ψ̃(~a) ⇐⇒ db⊗ Σ |= ψ(~a).

In particular, we explain why we can safely ignore in (3) con-

juncts that result from “rewriting” R̂-atoms and Rδ
i -atoms

for any FD δ ∈ Σ.

• Assume F = R̂(~x, y1, . . . , ym) is an unattacked atom of

q′ where all variables in ~x, y1, . . . , ym are free. We have

Rewrite(q′, ∅) = R̂(~x, y1, . . . , ym) ∧ Rewrite(q′ \ {F}, ∅).
By the construction in Definition 5, if db ⊗ Σ con-
tains facts R1

1 (~x, ~y1), . . . , R
1

ℓ (~x, ~yℓ), then it contains

R̂(~x, y1, . . . , ym). So the conjunct R̂(~x, y1, . . . , ym) can

be omitted in Rewrite(q′, ∅).

• Assume F = Rδ
i (~s, w) is an unattacked atom of q′ where

all variables in ~s, w are free. We have Rewrite(q′, ∅) =
Rδ

i (~s, w)∧∀z
(
Rδ

i (~s, z) → z = w∧Rewrite(q′ \ {F}, ∅)
)
.

For every uncertain database db such that db |= Σ, it
will be case that db⊗Σ contains no two facts Rδ

i (~a, b),
Rδ

i (~a, c) with b 6= c.

From [32, Lemmas C.1 and C.2], it follows that the attack
graph of q′(~u,~v)⊗Σ′ is acyclic. From Theorem 3, it follows
that CERTAINTY(q′(~u,~v),Σ′) is first-order expressible. By
the induction hypothesis, for every uncertain database db

such that db |= Σ′, for all sequences ~a,~b of constants,

db |= ϕ′(~a,~b) ⇐⇒ db⊗ Σ′ |= ψ′(~a,~b).

From the form of (2) and (3), it is correct to conclude that
for every uncertain database db such that db |= Σ, for every
sequence ~a of constants (where ~a has same length as ~u),

db |= ϕ(~a) ⇐⇒ db⊗ Σ |= ψ̃(~a).

This concludes the proof.

14

Example 16. Let q = {R(x, y, y)} and let Σ be the sin-
gleton containing KJD 1 [{1, 2}, {1, 3}]. We have q ⊗ Σ =

{R̂(x, y, y), R1

1 (x, y), R
1

2 (x, y)}. We have

Rewrite(q,Σ) = ∃x∃y
(
R(x, y, y)∧

∀y∀z2
(
R(x, y, z2) → z2 = y

))
.

Let ψ = Rewrite(q ⊗ Σ, ∅), i.e.,

ψ = ∃x∃y

(
R1

1 (x, y)∧

∀y
(
R1

1 (x, y) → R1

2 (x, y)∧

∀z1
(
R1

2 (x, z1) → z1 = y ∧ R̂(x, y, y)
)))

.

Let ψ̃ be the following sentence.

ψ̃ = ∃x∃y
(
R1

1 (x, y) ∧R
1

2 (x, y)∧

∀y∀z2
(
R1

1 (x, y) ∧R
1

2 (x, z2) → z2 = y
))
.

ψ and ψ̃ both express that there exist facts R1

1 (a, b), R
1

2 (a, b)
for which there exist no key-equal distinct facts.
For every uncertain database db that satisfies Σ, we have

that the following are equivalent:

1. db |= Rewrite(q,Σ);

2. db⊗ Σ |= ψ; and

3. db⊗ Σ |= ψ̃.

This is no longer true for uncertain databases that violate
Σ. For example, let db0 = {R(a, b, b), R(a, c, c)}. We have

db0⊗Σ = {R̂(a, b, b), R1

1 (a, b), R
1

2 (a, b), R̂(a, c, c), R
1

1 (a, c),
R1

2 (a, c)}. Then, db0 |= Rewrite(q,Σ), but db0⊗Σ 6|= ψ and

db0 ⊗ Σ 6|= ψ̃.

15

